Semi-Autonomous Networks: Theory and Decentralized Protocols

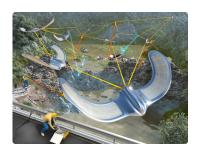
Airlie Chapman, Eric Schoof, and Mehran Mesbahi

Distributed Space Systems Lab (DSSL)

University of Washington

Motivation and Approach

- Semi-autonomous systems: adaption of consensus-type systems by introducing leader or influencing agents.
- How does network structure effect the efficiency of semi-autonomous systems?
- Can you dynamically adapt the network to encourage/deter the effect of influencing leaders/agents?



- Formulate the problem as an input-output dynamic system
- Relate system-theoretic metrics to the underlying network structure
- Form local edge swap protocols to increase/decrease these metrics

Graphs and Consensus Model

- Graph structure encapsulated by $\mathcal{G}=(V,E)$, where $V\in\mathbb{R}^n$ and $E\in\mathbb{R}^e$
- Matrix representation $L(\mathcal{G}) \in \mathbb{R}^{n \times n}$ where

$$[L(\mathcal{G})]_{ij} = egin{cases} d_i & i = j \ -1 & \{i,j\} \in E \ 0 & otherwise \end{cases}$$

and d_i is the degree of node v_i .

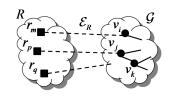
Consensus Model

$$\dot{x}_i(t) = \sum_{\{i,j\} \in E} (x_j(t) - x_i(t)) \iff \dot{x}(t) = -L(\mathcal{G})x(t)$$

• Studied in detail e.g. Jadbabaie '03, Olfati-Saber '07

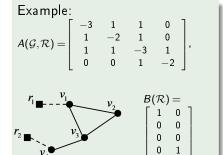
Influenced Consensus Model

- Influencing node set $\mathcal{R} = (R, \mathcal{E}_R), |\mathcal{E}_R| = r$
- $B(\mathcal{R}) \in \mathbb{R}^{n \times r}$, $[B(\mathcal{R})]_{ii} = 1$ for $\{v_i, r_i\} \in \mathcal{E}_R$, 0 otherwise
- Dirichlet Matrix $-A(\mathcal{G},\mathcal{R}) =$ $L(\mathcal{G}) + B(\mathcal{R})B(\mathcal{R})^T$



Influence Model

$$\dot{x}(t) = A(\mathcal{G}, \mathcal{R})x(t) + B(\mathcal{R})u(t)$$



Test Signal and Metrics

- ullet Test signal: Unit intensity noise with mean u_c
- Mean Metric: Consider infinite time horizon convergence with $\tilde{x}(t) = x(t) u_c \mathbf{1}$,

$$J(\mathcal{G},\mathcal{R},\tilde{x}(0)) = 2\int_0^\infty \tilde{x}(t)^T \tilde{x}(t) dt = -\tilde{x}(0)^T A(\mathcal{G},\mathcal{R})^{-1} \tilde{x}(0).$$

The average $\mathsf{E}(\widetilde{\mathsf{x}})$ convergence rate over $\|\widetilde{x}(0)=1\|$

$$J^{\text{avg}}(\mathcal{G},\mathcal{R}) = \frac{1}{n} \sum_{i=1}^{n} \left[-A(\mathcal{G},\mathcal{R})^{-1} \right]_{ii}$$

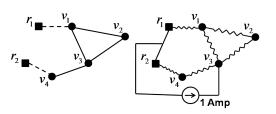
• Variance Metric: Variance of the states as $t \to \infty$ due to test signal is the trace of the controllability gramian $P(\mathcal{G}, \mathcal{R})$.

The average Var(x) at steady state

$$\operatorname{tr}(2P(\mathcal{G},\mathcal{R})) = \frac{1}{n} \sum_{v_i \in \pi(\mathcal{E}_{\mathcal{R}})} \left[-A(\mathcal{G},\mathcal{R})^{-1} \right]_{ii}$$

Effective Resistance of a Graph

- ullet Consider edges ${\cal E}$ and ${\cal E}_R$ in the graph model replaced with 1Ω resistors, and nodes R shorted as a common node r_0 .
- $\left[-A(\mathcal{G},\mathcal{R})^{-1}\right]_{ii}$ corresponds to node v_i 's effective resistance to r_0 , denoted $E_{eff}(v_i)$. [Barooah and Hespanha 2006]



Average $\mathbf{E}(\widetilde{\mathbf{x}})$

$$J^{\text{avg}}(\mathcal{G},\mathcal{R}) = \frac{1}{n} \sum_{i=1}^{n} E_{\text{eff}}(v_i)$$

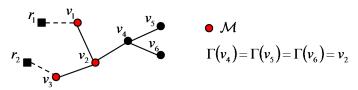
Average Var(x)

$$\operatorname{tr}(2P(\mathcal{G},\mathcal{R})) = \frac{1}{n} \sum_{v_i \in \pi(\mathcal{E}_R)} E_{\operatorname{eff}}(v_i)$$

Results over Trees \mathcal{T}

Finding $E_{
m eff}$ is relatively simple over tree graphs ${\cal T}$

- \bullet Main path agents $\mathcal{M} \colon$ Set of agents that lies on any shortest paths between agents in \mathcal{R}
- Subgraph $\mathcal{G}_{\mathcal{M}} = (\mathcal{M}, \mathcal{E}_{\mathcal{M}})$: Agents \mathcal{M} and edges between them
- Main path neighbor $\Gamma(v_i)$: Closest agent to v_i that is in \mathcal{M}



Average $\mathbf{E}(\widetilde{\mathbf{x}})$ for trees

$$J^{\text{avg}}(\mathcal{T}, \mathcal{R}) = \frac{1}{n} \left(\sum_{v_i \in \mathcal{M}} E_{\text{eff}}(v_i) + \sum_{v_i \notin \mathcal{M}} \left[E_{\text{eff}}(\Gamma(v_i)) + d(v_i, \Gamma(v_i)) \right] \right)$$

Average Var(x) for trees

$$\operatorname{tr}(2P(\mathcal{T},\mathcal{R})) = \frac{|\mathcal{M}|}{n} \operatorname{tr}(2P(\mathcal{G}_{\mathcal{M}},\mathcal{R})).$$

Results over Trees and One Attached Agent $(\mathcal{T}, \mathcal{R}^i)$

Centrality Lemma

$$J^{\text{avg}}\left(\mathcal{T},\mathcal{R}^{i}\right) = \frac{1}{n} \sum_{j=1}^{n} d\left(v_{i},v_{j}\right) + 1$$

Single Bounds

$$2 - \frac{1}{n} \le J^{\operatorname{avg}}(\mathcal{T}, \mathcal{R}^i) \le \frac{1}{2}(n+1)$$

Topology Independence

$$\operatorname{tr}(2P(\mathcal{G},\mathcal{R}^i)) = \frac{1}{n}$$

Link to more general \mathcal{G}

 Rayleigh's Monotonicity Principle: "If the edge resistance in a electrical network is decreased then the effective resistance between any two agents in the network can only decrease "

Graphs and their underlying trees

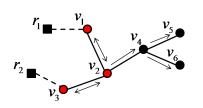
For a graph $\mathcal G$ any underlying tree $\mathcal T$ has the property $J^{\text{avg}}(\mathcal{G}, \mathcal{R}) < J^{\text{avg}}(\mathcal{T}, \mathcal{R}) \text{ and } \operatorname{tr}(P(\mathcal{G}, \mathcal{R})) < \operatorname{tr}(P(\mathcal{T}, \mathcal{R})).$

Random Graph

For a random graph $\mathcal{G}_{n,p}$, almost surely, $1 < J^{\text{avg}}(\mathcal{G}_{n,p}, \mathcal{R}^i) < 3$.

Adaptive Tree Protocols

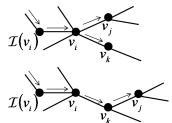
- Local edge trades to deter/encourage the influence of attached agents
- Approach for all v_i :
 - If $v_i \in \pi(\mathcal{E}_R)$, broadcasts a detection signal (which are rebroadcasted $\forall v_i \in V$)
 - Forms a proximity set $\mathcal{I}(v_i)$, where $v_j \in \mathcal{I}(v_i) \implies \text{Neighbor } v_j \in \mathcal{N}(v_i)$ is closer to a $r_i \in R$ than v_i .
 - Runs a local edge trade protocol with only knowledge of $\mathcal{I}(v_i)$.
- Node v_i is an element of the main path set \mathcal{M} , if $|\mathcal{I}(v_i)| > 1$.



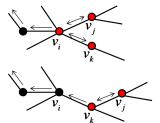
$$\mathcal{I}(v_5) = \mathcal{I}(v_6) = v_4$$
$$\mathcal{I}(v_2) = \{v_1, v_3\}$$

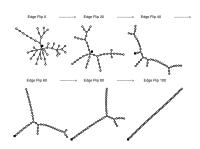
Adaptive Tree Protocols

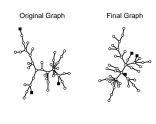
 $\mathbf{E}(\tilde{x})$ Protocol (Increase)



Var(x) Protocol (Decrease)

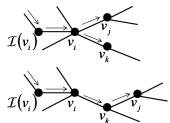




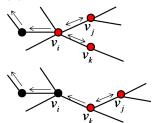


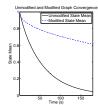
Adaptive Tree Protocols

 $\mathbf{E}(\tilde{x})$ Protocol (Increase)



Var(x) Protocol (Decrease)

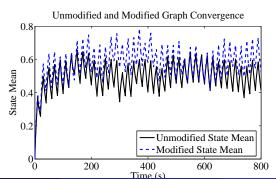




Time Synchronization Example - $J^{avg}(\mathcal{G},\mathcal{R})$ Protocol

- 40 independent processes running on lab computers in an adaptable tree configuration on a standard TCP/IP network
- ullet Running time consensus and the $J^{ extsf{avg}}(\mathcal{G},\mathcal{R})$ increase/decrease protocol
- Switching r = 3 friendly/malicious agents delivering 1 sec and 0 sec respectively

Movie Link



Conclusion

- Provided links between the efficiency of semi-autonomous systems and the underlying network structure via metrics $J^{avg}(\mathcal{G},\mathcal{R})$ and $trP(\mathcal{G},\mathcal{R})$.
- Proposed local protocols involving adjacent edge swaps that predictably alter these metrics.

Pending Questions:

- What about graphs that compromise between favorable $J^{avg}(\mathcal{G},\mathcal{R})$ and $trP(\mathcal{G},\mathcal{R})$?
- Focused on constant mean noise, how about more arbitrary signals?
- How about simultaneous friendly and malicious attached agents?
- Local protocols over general graphs?

