State Controllability, Output Controllability and Stabilizability of Networks: A Symmetry Perspective

Airlie Chapman and Mehran Mesbahi

Robotics, Aerospace, and Information Networks Lab (RAIN)

University of Washington
The Network in the Dynamics

General Dynamics

\[
\dot{x}(t) = f(G, x(t), u(t))
\]
\[
y(t) = g(G, x(t), u(t))
\]

<table>
<thead>
<tr>
<th>Network</th>
<th>System Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph Spectrum</td>
<td>Rate of convergence</td>
</tr>
<tr>
<td>Random Graphs</td>
<td>Stochastic Matrices</td>
</tr>
<tr>
<td>Graph Factorization</td>
<td>Decomposition</td>
</tr>
<tr>
<td>Symmetry</td>
<td>Uncontrollability</td>
</tr>
</tbody>
</table>
The Network in the Dynamics

\[\dot{x}(t) = -A(G)x(t) + B(S)u(t) \]
\[y(t) = C(R)x(t) \]

- First Order, Linear Time Invariant model
- e.g., Laplacian, Adjacency, Advection matrices
- Input node set \(S = \{v_i, v_j, \ldots\} \), \(B(S) = [e_i, e_j, \ldots] \)
- Output node set \(R = \{v_p, v_q, \ldots\} \), \(C(R) = [e_p, e_q, \ldots]^T \)
Network Controllability

- Given a controllable/observable linear system we can
 - guarantee existence of a stabilizing controller using feedback and observer techniques
 - with augmented dynamics we can achieve steady state tracking and disturbance/noise rejection
 - reason about modes that can be manipulated from the input or observed from the output

- General area: **Structural controllability** (Liu et al. ’11), **strong controllability** (Jarczyk et al. ’11), **nonlinear controllability** (Aguilar and Bahman ’14), **degree of controllability** (Chapman et al. ’12)

- Specific area: **Graph Families** (Parlengeli et al. ’11, Zhang et al. ’11), **Symmetry** (Rahmani and Mesbahi ’06), **Equitable Partitions** (Martini et al. ’10), **Graph distances** (Yazicioglu and Bahman ’12), **Zero forcing sets** (Burgarth et al. ’14)
Proposition (Rahmani and Mesbahi 2006)

\((A(\mathcal{G}), B(S))\) is uncontrollable if there exists an automorphism of \(\mathcal{G}\) which fixes all inputs in the set \(S\).

The determining number of a graph \(\mathcal{G}\), denoted \(\text{Det}(\mathcal{G})\), is the smallest integer \(r\) so that \(\mathcal{G}\) has a determining set \(S\) of size \(r\).

Cardinality requirement: If the pair\((A(\mathcal{G}), B(S))\) is controllable then \(|S| \geq \text{Det}(\mathcal{G})\).
Necessary and Sufficient Condition?

Example

For the asymmetric graph G, $(-L(G), B(S))$ uncontrollable, where $S = \{1\}$. (Rahmani et al. ’06)

- How to analyze this G?

... signed fractional graph automorphisms
Fractional graph automorphisms

- Algebraic condition on P to represent an automorphism of the graph G is
 \[A(G)P = PA(G) \]
 \[1^T P = 1^T \]
 \[P1 = 1 \]
 \[P_{ij} \in \{0, 1\}. \]

- Similarly, P represents an automorphism with respect to $L(G)$ exists if condition (1) is replaced with $L(G)P = PL(G)$

- **Fractional automorphism**: Scheinerman and Ullman proposed an integer relaxation of condition (2) to $P_{ij} \geq 0$
 - P is doubly stochastic matrix instead of a permutation matrix
 - **Signed fractional automorphism**: Relaxed further to positive and nonpositive $P_{ij} \in \mathbb{R}$

Other Features
- The set of P’s forms a convex polytope
- P has a relaxed perfect matching interpretation
- G has no non-trivial fractional automorphisms $\iff G$ has no nontrivial equitable partitions
Fractional Input Symmetry

- A nontrivial signed fractional automorphism (SFA) with respect to $L(G)$ is input symmetric if it fixes the input node set S.
- S is referred to as fractional input symmetric.
- Equivalently, SFA matrix representation $P \neq I$ with $PB(S) = B(S)$ is referred to as input symmetric.

Theorem

(Chapman and Mesbahi ’14) The pair $(-L(G), B(S))$ is uncontrollable \iff there exists an input symmetric nontrivial SFA (S is fractional leader symmetric).

Example

Input set $S = \{1\}$ is uncontrollable as S is fractional leader symmetric with associated

$$P = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{5} \left(\mathbf{11}^T - I \right) \end{bmatrix}.$$
Diagonalizable Digraph Extension

Theorem

For diagonalizable $L(D)$, the pair $(-L(D), B(S))$ is uncontrollable \iff there exists an input symmetric nontrivial SFA (S is fractional input symmetric)

Examples of Diagonalizable Digraphs

- Acyclic digraphs: contain exactly one rooted spanning tree
- Simple Laplacian digraphs: Laplacian has no repeated eigenvalues, e.g., special families of directed digraph tournaments (Caen et al. ’92)
- Normal Laplacian digraphs: $L(G)L(G)^T = L(G)^T L(G)$, e.g., Cayley digraphs (Lyubshin and Savchenko ’09)
- Strongly Regular digraphs: the number of paths of length 2 starting at i and finishing j is t if $i = j$, λ if $(i,j) \in E$ and μ otherwise.

Example

A smallest controllable input set is $S = \{1,2\}$ with S fractional leader asymmetric.
Output Controllability

Output controllability indicates if the output nodes R are controllable from input nodes S.

Theorem

For diagonalizable $L(D)$, the triple $(-L(D), B(S), C(R))$ is output uncontrollable if there exists a nontrivial SFA which is simultaneously input symmetric, and non-output $V \setminus R$ symmetric.

Intuition: Nontrivial non-output symmetry forces output asymmetry. (NB: Theorem has been corrected from the paper to an sufficient condition only)

Example

The system is output uncontrollable with $R_2 = \{2, 3\}$ and non-output $V \setminus R_2 = \{1, 4\}$ with

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 1 & 1 \end{bmatrix}.$$
Stabilizability

- Recent interest in negatively weighted graphs which can induce unstable modes (Zelazo and Burger '14)

Stabilizability indicates if the unstable modes are controllable from input nodes S.
- A stable symmetric SFA satisfies $P \preceq I$ and $Pv_i = v_i$ where $\lambda_i(L(G)) > 0$.

Theorem

The pair $(-L(G), B(S))$ is output unstabilizable \iff there exists a nontrivial SFA which is simultaneously input symmetric and **stable symmetric**.

Intuition: Nontrivial stable symmetry forces **unstable asymmetry**.

Example

The system is stabilizable from input $S_1 = \{1\}$ but not $S_2 = \{2\}$ with

$$P = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
Optimization Formulation

- Equivalent optimization formulation for the (output) controllable/stabilizable conditions:

\[
\min_{P \in \mathbb{R}^{n \times n}, Z \in \mathbb{R}^{n \times p}} \text{tr} P
\]

\[
L(G)P = PL(G), \; PB = B
\] (2)

\[
P1 = 1, \; P = P^T
\] (3)

\[
P = I - ZC
\] (4)

\[
P \preceq I, (P - I)L(G) \succeq 0
\] (5)

- Objective (1) prevents, if possible, the trivial automorphism \(P = I \) solution
- Lines 1-3 check for controllability of \((-L(G), B)\)
- Lines 1-3 and 4 checks for output controllability of the triple \((-L(G), B, C)\)
- Lines 1-3 and 5 checks for stabilizability of the pair \((-L(G), B)\)
- Lines 1-3, 4 and 5 checks for output stabilizability of the triple \((-L(G), B, C)\).
Conclusion

- Explored the link between symmetry and (output) controllability and stabilizability of networked dynamics
- Related using the notion of (signed) fractional automorphisms (SFA) - a relaxation of traditional graph automorphisms
- Provided necessary and sufficient conditions using (signed) fractionally input symmetry and unstable asymmetry
- Provided necessary conditions using (signed) fractionally input symmetry and output asymmetry
- Posed network (output) controllability/stabilizability as a convex optimization problem
- Future work involves coupling the controllability convex optimization problem with other network design requirements

Edge weights optimized for distance to uncontrollability from $S = \{2\}$ and network connectivity

Airlie Chapman and Mehran Mesbahi

(Output) Controllability & Stabilizability of Networks
University of Washington
If all eigenvalues of $\mathcal{A}(G)$ are simple, then every automorphism of G has order 1 or 2, i.e., $\sigma(\sigma(i)) = i$ for all $i \in V$.

Let $G = G_1^{k_1} \square \cdots \square G_m^{k_m}$ be the prime factor decomposition for a connected graph G. Then $\text{Det}(G) = \max\{\text{Det}(G_i^{k_i})\}$. (Boutin ’09)

Strongly k-regular graphs are asymmetric with high eigenvalue multiplicity, i.e., exactly three eigenvalues.

Circulants graph on a prime number are uncontrollable from q consecutive inputs \iff eigenvalue geometric multiplicity is greater than $q \iff$ leader symmetric (Nabi-Abdolyousefi et al. ’12)
Popov-Belevitch-Hautus (PBH) test

(A, B) is uncontrollable if and only if there exists a left eigenvalue-eigenvector pair (λ, ν) of A such that $\nu^T B = 0$

- The eigenvectors of L are $\nu_1 = 1, \nu_2, \ldots,$ with eigenvalues $\lambda_1 = 0, \lambda_2, \ldots$

(\implies)

- (L, B) uncontrollable, $1^T B \neq 0 \implies \nu_i^T B = 0$ for some $i \neq 1$. Let $P_i = I - \nu_i \nu_i^T \implies P_i B = (I - \nu_i \nu_i^T)B = B$.
- Further $LP_i = L - L \nu_i \nu_i^T = L - \lambda_i \nu_i \nu_i^T = L - \nu_i \nu_i^T L = P_i L$ and $P_i 1 = P_i^T 1 = 1$.

(\impliedby)

- For $PL = LP$, $P \neq I$, then $(I - P)w \neq 0$ is a left-eigenvector for some left-eigenvector pair (μ, w) as

$$w^T(I - P)L = w^T L(I - P) = \mu w^T(I - P)$$

- $PB = B \implies w^T(I - P)B = w^T B - w^T B = 0 \implies (L, B)$ uncontrollable
Matching Perspective

- Examine perfect matchings \mathcal{E} between $G = (V, E)$ and $G' = (V', E')$.
- Construct graph $H = (V \cup V', E \cup E' \cup \mathcal{E})$: Refer to E and E' as edges and \mathcal{E} as links.
- A matching corresponds to an automorphism if an edge-link path $i \rightarrow a \rightarrow j'$ exists iff a link-edge path $i \rightarrow b' \rightarrow j'$ exists.
- If \mathcal{E} is now a (signed) fractional matching composed of weighted links.
- A matching corresponds to an (signed) fractional automorphism if the sum of weighted links of all edge-link paths from i to j' equals the sum of weighted links of all link-edge paths from i to j'.
Compact Graphs

- Let $S(A(G))$ be all the doubly stochastic matrices that commute with $A(G)$, then $S(A(G))$ represents the fractional automorphisms of G with respect to A.
- $\text{Aut}(G) = \{P_1, \ldots, P_t\} \subseteq S(A(G))$ for all permutation matrices P_i representing the automorphisms, hence $\text{conv}(\text{Aut}(G)) \subseteq S(A(G))$.

Definition

G is a **compact** graph $\iff \text{conv}(\text{Aut}(G)) = S(A(G))$

For compact graphs:
- $\text{Aut}(G)$ are all the extreme points of $S(A(G))$.
- The fractional automorphisms of A and L are shared.
- Known families: trees, cycles, complete, complement of compacts (if both connected), can be determined in polynomial time for prime node regular graphs.

Proposition (Chan and Godsil 1997)

For compact graphs, the automorphism problem is solved in polynomial time.
Equitable Partitions

Definition

An **equitable partition** of \mathcal{G} is a partition V into $\pi = \{C_1, C_2, \ldots, C_s\}$ s.t.
(a) vertices of C_i induce a regular graph
(b) edges of C_i and C_j induce a half-regular graph

- Characteristic matrix D of π is an $n \times s$ matrix with $D_{ij} = 1$ if $i \in C_j$ and 0 otherwise
- Let $P = D(D^T D)^{-1} D^T$ then P is symmetric and $P^2 = P$.

Proposition (Godsil 1997)

The partition π is equitable \iff P represents a fractional automorphism

- Consequence: \mathcal{G} has no non-trivial fractional automorphisms \iff \mathcal{G} has no nontrivial equitable partitions
Additional Features

- Every k-regular graph G on n nodes has a fractional automorphism represented by $P = \frac{1}{n} \mathbf{1}\mathbf{1}^T$. Further, $PA(G) = A(G)P \iff PL(G) = L(G)P$
 - The pair $(-L(G), B)$ is controllable if and only if $(A(G), B)$
 - The pair $(-L(G), B)$ is uncontrollable when $B = \alpha \mathbf{1}$ for all $\alpha \in \mathbb{R}$
- Equitable partitions have been previously linked to controllability
 - Uncontrollability is induced through equitable partitions \iff fractional leader symmetric
 - Fractionally leader asymmetric for all inputs \iff no non-trivial equitable partitions
- Fractional leader asymmetry is not sufficient for controllability

Counter-Example
Frucht graph with no fractional automorphisms is uncontrollable from single inputs $\{3, 4, 5, 7, 8, 9\}$.

Airlie Chapman and Mehran Mesbahi
(Output) Controllability & Stabilizability of Networks
University of Washington 13 / 13