Cartesian Products of Z-Matrix Networks:

Factorization and Interval Analysis

Airlie Chapman and Mehran Mesbahi
(work also in part with Marzieh Nabi-Abdolyousefi)

Distributed Space Systems Lab (DSSL)

University of Washington

Airlie Chapman and Mehran Mesbahi Cartesian Products of Z-Matrix Networks: University of Washington 1/ 27



The Network in the Dynamics

S(G,x(0),u(1))

General Dynamics

_ u(t) ()
x(t) =1£(G,x(t),u(t)) — —
y(t) =g(G,x(t), u(t))
] Network | System Dynamics
Graph Spectrum Rate of convergence
Random Graphs Random Matrices
Automorphisms Homogeneity
Graph Factorization Decomposition
N\

© State Dynamics
@ Controllability

Airlie Chapman and Mehran Mesbahi Cartesian Products of Z-Matrix Networks: University of Washington 2 /27



The Network in the Dynamics

A9)
o First Order, Linear Time Invariant model u(t) h y(1)
5i(2) = —wipxi(£) + X wieg(6) + (1) W) T
in~j —_— —1 5
yi(t) = xi(t) -
O J
A(G) =
w11 —w12 —Wip
x(t) = —A(G)x(t) + B(S)u(t) —wo1  wao
y(1) = C(R)x() - s
—Wp1 —Wn,n-1 Wnn

o A(G): Z-matrix, e.g. Laplacian (wii = ¥ wjj) and Advection matrices
(wii = L w;i)
@ Input node set S = {v;,vj,...}, B(S)=[ei,€j,...]

o Output node set R={v,,v,,...}, C(R) =[ep,eq,..-]"
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Graph Cartesian Product

o Cartesian product GOH
@ Vertex set: V(GOH) = V(G) x V(H)
o Edge set: (x1,x2) ~ (y1,)2) is in GOH

o if xg ~y1 and xo = ys or xg = y1 and xp ~ y»

O O
O —
) o
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Graph Cartesian Product

o Cartesian product GOOH
o Vertex set: V(GOH) = V(G) x V(H)
o Edge set: (x1,x2) ~ (y1,)2) is in GOH

o if xg ~y1 and xo = y2 or xg = y1 and x2 ~ y»
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Part 1:
Factoring the State Dynamics
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State Dynamics Factorization

Lemma 1: Uncontrolled Dynamics

Consider the dynamics

x(t) = —A(G:106G,0...0G,)x(t).
Then, when properly initialized, one has

x(t) = x1 (1) @ x2(1) @ - © xn(1)
where x;(t) = —A(G;)x;(t).
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State Dynamics Factorization

x(t) = —A(G10G,0G3) x(t)

—_——— -
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' et %1(6) = —A(G1)x1(0)
ke---@ @ @ @ --------- -

x(t) = x1 (1) ®x2 () ®x3(1)
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Graph Factorization

@ A graph can be factored as well as composed...

Theorem (Sabidussi 1960)

Every connected graph can be factored as a Cartesian product of prime graphs.
Moreover, such a factorization is unique up to reordering of the factors.

@ Primes: G = G10G, implies that either G; or G, is K;
o Number of prime factors is at most log |G|
o Algorithms
o Feigenbaum (1985) - O (\V\“)
o Winkler (1987) - O (|V|4) from isometrically embedding graphs by Graham

and Winkler (1985)
o Feder (1992) - O(|V||E])
o Imrich and Peterin (2007) - O (|E|)
o C++ implementation by Hellmuth and Staude
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Controlled Factorization Lemma

Lemma 2: Controlled Dynamics

Consider the dynamics

() = —A(G10G0...00G)x(t) + B(S1 x Sa % - x Sp)u(t).
() = C(Ry x Ra % -+ x Ry)x(t)

Then, when properly initialized and u(t) = u1(t) ® u2(t) ® -+ - ® up(t), one has
y(t) = yu(t) +y(t),

V(1) = 110(8) ® y2u (£) ® - ® Yu£)
ye(0)= [ ()@ or(2) 0+ jur ()

where x;(t) = —A(Gi)xi(t) + B(Si)ui(t) and yi(t) = C(Ri)x(t).
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Controlled Factorization Lemma

—>
—>
— — —_—
Sl X SZ
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Controlled Factorization Lemma

Lemma 2: Controlled Dynamics

Consider the dynamics

X(0) =~ AT (D) + BT S)u(o)
y(8) = C[TRIx(t)

Then, when properly initialized and u(t) =[], ui(t), one has

y(O =Tt + [ Tlte)de

where x;(t) = —A(G;)x;(t) + B(S;)u;(t) and y;(t) = C(R;)xi(t).
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Controlled Factorization - Idea of the Proof

o Firstly
A(G10G) = A(G1) @1 + 1R A(G2) = A(G1) © A(G»)
e Also
AlG1)A(G2) — (A(G1) g A(G2)
@ Using

B(Sl X 52) = B(Sl) ®B(52)
@ As well as

e_A(glljgz)tBU(t) _ (e—A(gl)t ® e—A(gz)t)(B(Sl) ® B(S2))(u1(t) @ uo(t))
= efA(gl)tB(Sl)ul(t) ® eiA(g2)tB(S2)u2(t)

The proof follows from these observations.
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Approximate Graph Products
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Approximate Factorization Lemma

Lemma 3: Approximation

Consider the dynamics

x(t) = —A(G)x(t) + B(S)u(t),
y(t) = C(R)x(t)

A(g) € [A(HDQi)vA(HDGi)]' Se [Hx ii:ngi], R= [Hx Bhnxﬁi] and
positive u(t) € [[Te u;(t),[1s Ui(t)].- Then, when properly initialized, one has

170+ [ Tluode <y < Ty, 0+ [ Tl 04

WfEe;e x;(t) = —A(G;)xi(t) + B(S;)ui(t), y,(t) = C(R;)x;(t) and similarily for
.yl
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Approximate Graph Products

@ Can a graph be approximately factored as well as approximately composed?
o Distance between graphs d(G,#) is the smallest integer k such that

V(G)AV(H)| + |E@G)AER)| < k.
A graph G is a k-approximate graph product if there is a product H such that

d(G,H) < k.

Lemma (Hellmuth 2009)

For fixed k all Cartesian k-approximate graph products can be recognized in
polynomial time.
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Part 2:

Factoring Controllability
(work with Marzieh Nabi-Abdolyousefi)
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Controllability

@ Dynamics are controllable if for any x(0), x¢ and tr there exists an input
u(t) such that x(tr) = xr.

@ Significant in networked robotic systems, human-swarm interaction, network
security, quantum networks.

@ Challenging to establish for large networks

@ Known families of controllable graphs for
selected inputs

o Paths

e Circulants

o Grids

]

Distance regular graphs
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Controllability Factorization - Product Control

Theorem 1: Product Controllability

The dynamics

x(t) = —A([Gi)x(t) + B([ T Si)u(t)
O X
y(t) = C([TR)x()
where A([ToGi) has simple eigenvalues is controllable/observable if and only if

xi(t) = —A(Gi)xi(t) + B(Si)ui(t)
yi(t) = C(R;)xi(t)

is controllable/observable for all ;.
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Controllability Factorization - Idea of the Proof

Popov-Belevitch-Hautus (PBH) test

(A, B) is uncontrollable if and only if there exists a left eigenvalue-eigenvector pair
(A,v) of A such that v B =0.

o Eigenvalue and eigenvector relationship:

| [A(GL) [ A(G2) [ A(G:OG) |
Eigenvalue A; W i +
Eigenvector Vi uj Vi ® uj

e Also (V,' ® u,-)T(B(Sl) X B(SQ)) = V,-TB(Sl) ® u,-TB(SQ)
@ The proof follows from these observations.
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Controllability Factorization - Layered Control

Theorem 2: Layered Controllability

The dynamics

x(t) = —A([Gi)x(t) + B([ T Si)u(t)
O X
y(t) = C([TR)x()
where S; = R; = V/(G;) for i =2,...,n is controllable/observable if and only if

x1(t) = —A(G1)x(t) + B(S1)u (1)
y1(t) = C(Ry)x(t)

is controllable/observable.
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Controllability Factorization - Layered Control

— —_—

S, X Vg,)—>
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Uncontrollability through Symmetry

3 <

Proposition (Rahmani and Mesbahi 2006)

(A(9),B(S)) is uncontrollable if there exists an automorphism of G which fixes all
inputs in the set S (i.e., S is not a determining set.)

The determining number of a graph G, denoted Det(G), is the smallest integer r
so that G has a determining set S of size r.

(A(G),B(S)) is uncontrollable if |S| < Det(G).

University of Washington 25 / 27
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Breaking Symmetry

Automorphism group for graph Cartesian products

The automorphisms for a connected G is generated by the automorphisms of its
prime factors.

Proposition: Automorphism group for graph Cartesian products

For controllable pairs (A(G1),B(S1)) and (A(G2),B(S2)) where |Si| = Det(G1)
and |S;| =1. Then S =5; X S, is the smallest input set such that
A(G10G,, B(S)) is controllable.

A==

—>
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Conclusion

@ Explored decomposition of Z-matrix based network into smaller
factor-networks

Provided exact and approximate factorization of state dynamics
Presented a factorization of controllability - a product and layered approach

Linked the factors symmetry to smallest controllable input set

Future work involves examining other graph products in network dynamics
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