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The Network in the Dynamics

General Dynamics

ẋ(t) = f (G,x(t),u(t))
y(t) = g(G,x(t),u(t))

Network System Dynamics

Graph Spectrum Rate of convergence
Random Graphs Random Matrices
Automorphisms Homogeneity

Graph Factorization Decomposition
↘
1 State Dynamics

2 Controllability
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The Network in the Dynamics

First Order, Linear Time Invariant model

ẋi (t) =−wiixi (t)+ ∑
i∼j

wijxj (t)+ui (t)

yi (t) = xi (t)

Dynamics

ẋ(t) =−A(G)x(t)+B(S)u(t)

y(t) = C (R)x(t)

A(G) =
w11 −w12 · · · −w1n

−w21 w22

...
...

. . . −wn−1,n
−wn1 · · · −wn,n−1 wnn


A(G): Z-matrix, e.g. Laplacian (wii = ∑wij) and Advection matrices
(wii = ∑wji )

Input node set S = {vi ,vj , . . .}, B(S) = [ei ,ej , . . . ]

Output node set R= {vp,vq, . . .}, C (R) = [ep,eq, . . . ]
T
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Graph Cartesian Product

Cartesian product G�H
Vertex set: V (G�H) = V (G)×V (H)
Edge set: (x1,x2)∼ (y1,y2) is in G�H

if x1 ∼ y1 and x2 = y2 or x1 = y1 and x2 ∼ y2
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Part 1:

Factoring the State Dynamics
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State Dynamics Factorization

Lemma 1: Uncontrolled Dynamics

Consider the dynamics

ẋ(t) =−A(G1�G2� . . .�Gn)x(t).

Then, when properly initialized, one has

x(t) = x1(t)⊗x2(t)⊗·· ·⊗xn(t)

where ẋi (t) =−A(Gi )xi (t).
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State Dynamics Factorization
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Graph Factorization

A graph can be factored as well as composed...

Theorem (Sabidussi 1960)

Every connected graph can be factored as a Cartesian product of prime graphs.
Moreover, such a factorization is unique up to reordering of the factors.

Primes: G = G1�G2 implies that either G1 or G2 is K1

Number of prime factors is at most log |G|

Algorithms

Feigenbaum (1985) - O
(
|V |4.5

)
Winkler (1987) - O

(
|V |4

)
from isometrically embedding graphs by Graham

and Winkler (1985)
Feder (1992) - O (|V | |E |)
Imrich and Peterin (2007) - O (|E |)
C++ implementation by Hellmuth and Staude
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Controlled Factorization Lemma

Lemma 2: Controlled Dynamics

Consider the dynamics

ẋ(t) =−A(G1�G2� . . .�Gn)x(t)+B(S1×S2×·· ·×Sn)u(t).

y(t) = C (R1×R2×·· ·×Rn)x(t)

Then, when properly initialized and u(t) = u1(t)⊗u2(t)⊗·· ·⊗un(t), one has
y(t) = yu(t)+ yf (t),

yu(t) = y1u(t)⊗y2u(t)⊗·· ·⊗ynu(t)

yf (t) =
∫ t

0
ẏ1f (τ)⊗ ẏ2f (τ)⊗·· ·⊗ ẏnf (τ)dτ

where ẋi (t) =−A(Gi )xi (t)+B(Si )ui (t) and yi (t) = C (Ri )xi (t).
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Controlled Factorization Lemma
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Controlled Factorization Lemma

Lemma 2: Controlled Dynamics

Consider the dynamics

ẋ(t) =−A(∏
�

Gi )x(t)+B(∏
×
Si )u(t)

y(t) = C (∏
×
Ri )x(t)

Then, when properly initialized and u(t) = ∏⊗ ui (t), one has

y(t) = ∏
⊗
yiu(t)+

∫ t

0
∏
⊗
ẏif (τ)dτ

where ẋi (t) =−A(Gi )xi (t)+B(Si )ui (t) and yi (t) = C (Ri )xi (t).
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Controlled Factorization - Idea of the Proof

Firstly
A(G1�G2) = A(G1)⊗ I + I ⊗A(G2) = A(G1)⊕A(G2)

Also
eA(G1)⊕A(G2) = eA(G1)⊗ eA(G2)

Using
B(S1×S2) = B(S1)⊗B(S2)

As well as

e−A(G1�G2)tBu(t) = (e−A(G1)t ⊗ e−A(G2)t)(B(S1)⊗B(S2))(u1(t)⊗u2(t))

= e−A(G1)tB(S1)u1(t)⊗ e−A(G2)tB(S2)u2(t)

The proof follows from these observations.
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Approximate Graph Products

A(G) ∈
[
A(G1�G2),A(G1�G2)

]
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Approximate Factorization Lemma

Lemma 3: Approximation

Consider the dynamics

ẋ(t) =−A(G)x(t)+B(S)u(t),

y(t) = C (R)x(t)

A(G) ∈
[
A(∏�G i ),A(∏�G i )

]
, S ∈

[
∏×S i ,∏×S i

]
, R =

[
∏×R i ,∏×R i

]
and

positive u(t) ∈ [∏⊗ ui (t),∏⊗ ui (t)]. Then, when properly initialized, one has

∏
⊗
y iu(t)+

∫ t

0
∏
⊗
ẏ if (τ)dτ ≤ y(t)≤∏

⊗
y
iu
(t)+

∫ t

0
∏
⊗
ẏ
if
(τ)dτ

where ẋ i (t) =−A(G i )x i (t)+B(S i )ui (t), y i (t) = C (R i )x i (t) and similarily for
y i (t).
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Approximate Graph Products

Can a graph be approximately factored as well as approximately composed?

Distance between graphs d(G,H) is the smallest integer k such that∣∣V (G′)4V (H′)
∣∣+ ∣∣E (G′)4E (H′)∣∣≤ k.

A graph G is a k-approximate graph product if there is a product H such that

d(G,H)≤ k.

Lemma (Hellmuth 2009)

For �xed k all Cartesian k-approximate graph products can be recognized in
polynomial time.
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Approximate Factorization Lemma: An Example
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Part 2:

Factoring Controllability
(work with Marzieh Nabi-Abdolyouse�)
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Controllability

Dynamics are controllable if for any x(0), xf and tf there exists an input
u(t) such that x(tf ) = xf .

Signi�cant in networked robotic systems, human-swarm interaction, network
security, quantum networks.

Challenging to establish for large networks

Known families of controllable graphs for
selected inputs

Paths
Circulants
Grids
Distance regular graphs
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Controllability Factorization - Product Control

Theorem 1: Product Controllability

The dynamics

ẋ(t) =−A(∏
�

Gi )x(t)+B(∏
×
Si )u(t)

y(t) = C (∏
×
Ri )x(t)

where A(∏�Gi ) has simple eigenvalues is controllable/observable if and only if

ẋi (t) =−A(Gi )xi (t)+B(Si )ui (t)

yi (t) = C (Ri )xi (t)

is controllable/observable for all i .
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Controllability Factorization - Idea of the Proof

Popov-Belevitch-Hautus (PBH) test

(A,B) is uncontrollable if and only if there exists a left eigenvalue-eigenvector pair
(λ ,v) of A such that vTB = 0.

Eigenvalue and eigenvector relationship:

A(G1) A(G2) A(G1�G2)
Eigenvalue λi µj λi +µj

Eigenvector vi uj vi ⊗uj

Also (vi ⊗ui )
T (B(S1)⊗B(S2)) = vTi B(S1)⊗uTi B(S2)

The proof follows from these observations.
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Controllability Factorization - Layered Control

Theorem 2: Layered Controllability

The dynamics

ẋ(t) =−A(∏
�

Gi )x(t)+B(∏
×
Si )u(t)

y(t) = C (∏
×
Ri )x(t)

where Si = Ri = V (Gi ) for i = 2, . . . ,n is controllable/observable if and only if

ẋ1(t) =−A(G1)x1(t)+B(S1)u1(t)

y1(t) = C (R1)x1(t)

is controllable/observable.
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Controllability Factorization - Layered Control
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Uncontrollability through Symmetry

Proposition (Rahmani and Mesbahi 2006)

(A(G),B(S)) is uncontrollable if there exists an automorphism of G which �xes all
inputs in the set S (i.e., S is not a determining set.)

The determining number of a graph G, denoted Det(G), is the smallest integer r
so that G has a determining set S of size r .

Corollary

(A(G),B(S)) is uncontrollable if |S |< Det(G).
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Breaking Symmetry

Automorphism group for graph Cartesian products

The automorphisms for a connected G is generated by the automorphisms of its
prime factors.

Proposition: Automorphism group for graph Cartesian products

For controllable pairs (A(G1),B(S1)) and (A(G2),B(S2)) where |S1|= Det(G1)
and |S2|= 1. Then S = S1×S2 is the smallest input set such that
A(G1�G2,B(S)) is controllable.
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Conclusion

Explored decomposition of Z-matrix based network into smaller
factor-networks

Provided exact and approximate factorization of state dynamics

Presented a factorization of controllability - a product and layered approach

Linked the factors symmetry to smallest controllable input set

Future work involves examining other graph products in network dynamics
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