Problem 1

For simulation, we assume the following initial conditions:

\[R_0 = 300 + 6378 \text{ km}, \quad \vec{r} = [1.3, 0.8, -1.2] \text{ km}, \quad \mu = 398600.4, \quad n = \sqrt{\frac{\mu}{R_0^3}} = 0.0010831, \]

Rendezvous time \(t = 100 \text{ s}, \quad \vec{\dot{r}} = [\dot{x}_0^+, \dot{y}_0^+, \dot{z}_0^+] = [0.0309, -0.0023, 0.0001] \]

From the solution of the relative motion in the circular orbit, we obtain the required velocity for rendezvous as

\[\dot{x}_0^+ = -0.0122 \text{ km/s}, \quad \dot{y}_0^+ = -0.0095 \text{ km/s}, \quad \dot{z}_0^+ = 0.0119 \text{ km/s} \] \(\text{(1)} \)

and the velocity at the point of rendezvous yields

\[\dot{x}(100s) = -0.0137 \text{ km/s}, \quad \dot{x}(100s) = -0.0066 \text{ km/s}, \quad \dot{x}(100s) = 0.0120 \text{ km/s}. \] \(\text{(2)} \)

Thus, the impulse to boost up to the required velocity and the second impulse to cancel out the residual velocity are given as

\[\triangle v_1 = 0.0453 \text{ km/s}, \quad \triangle v_2 = 0.0194 \text{ km/s} \] \(\text{(3)} \)
\[r_{\dot{p}}(3) = -r(3) \frac{n}{\tan(n t)}; \]

% velocity at time t
\[r_{\dot{t}}(1) = 3n \sin(n t) r(1) + \cos(n t) r_{\dot{p}}(1) + 2 \sin(n t) \]
\[\frac{r_{\dot{p}}(1)}{} + \frac{r_{\dot{p}}(1)}{} + \frac{r_{\dot{p}}(1)}{}; \]
\[r_{\dot{t}}(2) = 6n(-1-\cos(n t)) r(1) - 2 \sin(n t) r_{\dot{p}}(1) \]
\[+ 3 \cos(n t) r_{\dot{p}}(2); \]
\[r_{\dot{t}}(3) = -n \sin(n t) r(3) + \cos(n t) r_{\dot{p}}(3); \]

% two impulses
\[\text{del}_v_1 = \|r_{\dot{p}} - r_{\dot{t}}\| \]
\[\text{del}_v_2 = \|r_{\dot{t}}\| \]

%--
\[t_{\text{span}} = 0:1:t; \]
\[r_{t} = r; \]

for i=2:length(t_{\text{span}})
\[r_{t}(i,1) = (4-3 \cos(n t_{\text{span}}(i))) r(1) + \left(\sin(n t_{\text{span}}(i))/n \right) \]
\[+ 2(1-\cos(n t_{\text{span}}(i)))/n r_{\dot{p}}(2); \]
\[r_{t}(i,2) = (6 \sin(n t_{\text{span}}(i)) - 6 n t_{\text{span}}(i)) r(1) + r(2) \]
\[- 2(-1-\cos(n t_{\text{span}}(i)))/n r_{\dot{p}}(1) + (4 \sin(n t_{\text{span}}(i)) \]
\[/n - 3 t_{\text{span}}(i)) r_{\dot{p}}(2); \]
\[r_{t}(i,3) = \cos(n t_{\text{span}}(i)) r(3) + \sin(n t_{\text{span}}(i))/n r_{\dot{p}}(3); \]

% rotation matrix about 3-axis
\[C_3 = \begin{bmatrix} \cos(n t_{\text{span}}(i)) & \sin(n t_{\text{span}}(i)) & 0 \\ -\sin(n t_{\text{span}}(i)) & \cos(n t_{\text{span}}(i)) & 0 \\ 0 & 0 & 1 \end{bmatrix} \]
\[\text{R}_i(i,:) = (C_3 r_{t}(i,:))'; \]
\[\text{R}_i2(i,:) = \begin{bmatrix} \text{R}_0 \cos(n t_{\text{span}}(i)) \\ \text{R}_0 \sin(n t_{\text{span}}(i)) \\ 0 \end{bmatrix}; \]
\]
\[\text{end} \]
\[\text{figure}(1); \text{plot}(t_{\text{span}},r_{t},'.-'); \]
\[\text{xlabel}('time'); \text{ylabel}('distance'); \text{legend}('x','y','z') \]
\[\text{figure}(2); \text{plot}(\text{R}_i(:,1),\text{R}_i(:,2),'.-',\text{R}_i2(:,1),\text{R}_i2(:,2),'.-'); \]
\[\text{xlabel}('x distance'); \text{ylabel}('y distance'); \text{legend}('Target','Chase') \]

Problem 2

(a) First, we know that \(n = 0.0011 \) since the target spacecraft is in 400km circular orbit. From an elliptic formation flying orbit equation, we can find initial conditions at time \(t \) resulting in the formation flying orbit as

\[\frac{\dot{y}_t}{n} = 0 \text{ km/s}, \quad \dot{x}_t = 0 \text{ km}, \quad \text{and} \quad x^2 + \left(\frac{y - y_t + \frac{2 \pi i}{n}}{\frac{4}{n}} \right)^2 = \left(\frac{\dot{x}_t}{n} \right)^2 \tag{1} \]

Given the shape of the orbit trajectory (ellipse equation), we can find

\[\left(\frac{\dot{x}_t}{n} \right)^2 = b^2 \rightarrow \dot{x}_t = nb = 0.00028285 \text{ km/s} \tag{2} \]
\[-y_t + \frac{2 \dot{x}_t}{n} = 0 \rightarrow y_t = 0.5 \text{ km} \tag{3} \]

Thus, any spacecraft having such initial conditions will be flying an elliptic formation flying orbit around the target. Since we need 6 spacecraft flying uniformly in the orbit, we can let each spacecraft have such initial conditions.
$T/6$ interval as

\[
\begin{align*}
\text{S/C 1: } & \quad x_t = 0, \quad \dot{x}_t = 0.00028285, \quad y_t = 0.5, \quad \dot{y}_t = 0, \quad \text{at } t = 925.58s \\
\text{S/C 2: } & \quad x_t = 0, \quad \dot{x}_t = 0.00028285, \quad y_t = 0.5, \quad \dot{y}_t = 0, \quad \text{at } t = 1851.2s \\
\text{S/C 3: } & \quad x_t = 0, \quad \dot{x}_t = 0.00028285, \quad y_t = 0.5, \quad \dot{y}_t = 0, \quad \text{at } t = 2776.8s \\
\text{S/C 4: } & \quad x_t = 0, \quad \dot{x}_t = 0.00028285, \quad y_t = 0.5, \quad \dot{y}_t = 0, \quad \text{at } t = 3702.4s \\
\text{S/C 5: } & \quad x_t = 0, \quad \dot{x}_t = 0.00028285, \quad y_t = 0.5, \quad \dot{y}_t = 0, \quad \text{at } t = 4628s \\
\text{S/C 6: } & \quad x_t = 0, \quad \dot{x}_t = 0.00028285, \quad y_t = 0.5, \quad \dot{y}_t = 0, \quad \text{at } t = 5553.6s,
\end{align*}
\]

where $T = 2\pi/n = 5553.5s$ is an orbit period.

We assume that 6 spacecraft have all initial conditions are zeros, we can find two impulse maneuvers for each spacecraft. For example, for the first spacecraft, the required velocity(after burn) is

\[
\dot{x}_0^+ = -0.00044219, \quad \dot{y}_0^+ = 0.00038295,
\]

and the velocity at a given time t,

\[
\dot{x}_t^- = 0.00044219, \quad \dot{y}_t^- = 0.00038295
\]

Thus, the impulse to boost up to the required velocity and the second impulse to match the orbit velocity are given as

\[
\Delta v_1 = 0.00058497, \quad \Delta v_2 = 0.00041478
\]

The trajectory of the spacecraft 1 with respect to the orbit frame(target) is depicted in the Fig. 2 for 5000s. Note that the orbit period is 5535s.

Figure 2: Formation flying orbit trajectory with respect to the orbit frame.

```matlab
% Pb2, HW7 for spacecraft #1
clear all;clc;close all;syms dx_0 dy_0
R0 = 6378 + 400;mu = 398600.4;t = 925.58;
n = sqrt(mu/R0^3);dx_t_p= 0.00028285;dy_t_p = 0;
x_0 = 0;y_0 = 0;x_t = 0;y_t = 0.5;
% required velocity to get to x,y at t
```
result = solve(x_t == (4-3*cos(n*t))*x_0 + sin(n*t)/n*dx_0 +...
 2*(1-cos(n*t))/n*dy_0,y_t == (6*sin(n*t)-6*n*t)*x_0 + y_0 +...
 2*(-1+cos(n*t))/n*dx_0 + (4*sin(n*t)/n-3*t)*dy_0);
 dx_0_p = double(result.dx_0)
 dy_0_p = double(result.dy_0)

 vel at time t
 dx_t_m = 3*n*sin(n*t)*x_0 + cos(n*t)*dx_0_p + 2*sin(n*t)*dy_0_p
 dy_t_m = 6*n*(-1+cos(n*t))*x_0 - 2*sin(n*t)*dx_0_p + (-3+4*cos(n*t))*dy_0_p

 % two impulses
 del_v_1 = sqrt(dx_0_p^2 + dy_0_p^2)
 del_v_2 = sqrt((dx_t_m-dx_t_p)^2 + (dy_t_m-dy_t_p)^2)

 tspan = 1:1:5000; r = [x_0,y_0];
 for i = 1:925
 r_t(i,1) = (4-3*cos(n*tspan(i)))*r(1) + (sin(n*tspan(i))/n)...
 dx_0_p + (2(1-cos(n*tspan(i)))/n)*dy_0_p;
 r_t(i,2) = (6*sin(n*tspan(i))-6*n*tspan(i))*r(1) + r(2)...
 +2*(-1+cos(n*tspan(i)))/n*dx_0_p + (4*sin(n*tspan(i))...
 /n - 3*tspan(i))*dy_0_p
 r_t(i,3) = 0;
 end

 r = [x_t,y_t];
 for i = 1:tspan(end)
 r_t(925+i,1) = (4-3*cos(n*tspan(i)))*r(1) + (sin(n*tspan(i))/n)...
 dx_t_p + (2(1-cos(n*tspan(i)))/n)*dy_t_p;
 r_t(925+i,2) = (6*sin(n*tspan(i))-6*n*tspan(i))*r(1) + r(2)...
 +2*(-1+cos(n*tspan(i)))/n*dx_t_p + (4*sin(n*tspan(i))...
 /n - 3*tspan(i))*dy_t_p
 r_t(925+i,3) = 0;
 end

 figure(2);plot(r_t(:,2),r_t(:,1),'.-');axis equal;legend('S/C 1')
xlabel('y distance');ylabel('x distance');axis([-0.55 0.55 -0.3 0.3])
Problem 3

Let the Earth’s radius be \(r_e = 6378.1 \) km, the altitude is \(h = 300 \) km, the circular orbit radius of the Earth about the sun is \(r_{\text{E}/\text{S}} = 149.6 \cdot 10^6 \) km, while the Earth’s gravitational constant is \(\mu_{\text{Earth}} = 3.986 \cdot 10^7 \) km³/s² and the sun gravity constant is \(\mu_\odot = 1.326 \cdot 10^{11} \) km³/s².

a) The orbit radius of the satellite relative to the Earth center is

\[
r_s = r_e + h = 6678.1 \text{ km}
\]

The Earth’s gravitational acceleration magnitude at this altitude is given by

\[
a_{\text{Earth}} = \frac{\mu_{\text{Earth}}}{r_s^2} = 0.00893782 \text{ km/s}^2
\]

b) The acceleration magnitude of the Earth due to the Sun’s gravity field is given by

\[
a_{\text{Earth}/\odot} = f_{\text{Earth}/\odot} = \frac{G\mu_{\odot}m_s}{r_{\text{Earth}/\odot}^2} = \frac{\mu_\odot}{r_{\text{Earth}/\odot}^2}
\]

The acceleration magnitude of the satellite due to the Sun’s gravity can be approximated using \(r_{\text{s}/\odot} \approx r_{\text{E}/\odot} \):

\[
a_{\text{s}/\odot} = a_{\text{Earth}/\odot} = \frac{f_{\text{s}/\odot}}{m_s} = \frac{G\mu_{\odot}m_s}{r_{\text{s}/\odot}^2} \approx \frac{\mu_\odot}{r_{\text{Earth}/\odot}^2} = a_{\text{Earth}/\odot}
\]

To estimate the angle \(\delta \) between the Earth/Sun radius shown in Figure 1 of the problem statement and the Satellite/Sun radius shown, we find

\[
\sin \delta \approx \frac{r_{\text{s}/\odot}}{r_{\odot}/\odot}
\]

The desired disturbance acceleration magnitude \(a_d \) is computed as the difference between the sun influence on the satellite and the Earth (see Eq. (9.43)), which can be approximated as

\[
a_d \approx a_{\text{Earth}/\odot} \sin \delta = a_{\text{Earth}/\odot} \frac{r_{\text{s}/\odot}}{r_{\text{Earth}/\odot}} = \frac{\mu_\odot}{r_{\text{Earth}/\odot}^2} \frac{r_{\text{s}/\odot}}{r_{\text{Earth}/\odot}} = \mu_\odot \frac{r_{\text{s}/\odot}}{r_{\odot}/\odot} = 2.64485 \cdot 10^{-10} \text{ km/s}^2
\]

c) Note that this sun perturbation on the relative motion of the satellite motion about the Earth is about 7 orders of magnitudes smaller than the Earth’s gravitational influence on the satellite.

Problem 4

a) Taking the magnitude of the inertial position and velocity vectors, we find

\[
\frac{1}{a} = \frac{2}{\tau} = \frac{v^2}{\mu_{\text{Earth}}} = 0.0001492537313 \text{ km}^{-1}
\]

Since \(1/a > 0 \), the orbit must be elliptical! A parabolic orbit would have \(1/a = 0 \), while a hyperbolic orbit would have \(1/a < 0 \). Thus, the semi-major axis is given by

\[
a = 6700.0000000 \text{ km}
\]
b) The angular momentum vector \mathbf{h} is given by

$$\mathbf{h} = \mathbf{r} \times \mathbf{v} = \begin{pmatrix} 22654.61356308633 \\ -26998.71710264165 \\ 37794.90823508838 \end{pmatrix} \text{ km}^2/\text{s}$$

The eccentricity vector is then given by

$$\mathbf{c} = \mathbf{v} \times \mathbf{h} - \frac{\mu c}{r} = \begin{pmatrix} 142.6452540483151 \\ 337.9676231756457 \\ 155.9236261202605 \end{pmatrix} \text{ km}^3/\text{s}^2$$

The magnitude of the eccentricity vector is

$$c = \sqrt{\mathbf{c} \cdot \mathbf{c}} = 398.5999999999929 \text{ km}^3/\text{s}^2$$

The eccentricity is then given by

$$e = \frac{c}{\mu} = 0.001$$

c) The periapses radius is $r_p = a(1 - e) = 6693.3 \text{ km}$. Since this is greater than the Earth’s radius, the satellite will not hit the Earth.

Problem 5

a) Given $\mu = 0.00095369$, we can obtain the Lagrangian points for Sun-Jupiter system as

$$L_1 = (-1.06886, 0), \quad L_2 = (-0.93246, 0), \quad L_3 = (1.00041, 0), \quad L_{4,5} = (-0.499046, \pm 0.8660254)$$

(1)

b) We can find the non-dimensional natural frequencies by investigating the eigenvalue of the matrix from the form of $\dot{x} = Ax$. For the Sun-Jupiter system, we have $\mu = 0.00095369$ and

$$\lambda_{1,2} = \pm 0.0805, \quad \lambda_{3,4} = \pm 0.9968, \quad \lambda_{5,6} = \pm i.$$

Therefore, we have non-dimensional natural frequencies:

$$0.0805, 0.9968, \text{ and } 1$$

(3)

c) We can simulate the trajectory by integrating CR3BP differential equations. From the simulation result (Fig. 3), we obtain the next closest pass time of the comet by Jupiter as

$$t = 9.003 = \frac{T}{2\pi} = 1.435T,$$

(4)

where T denotes the period of the Sun-Jupiter system.

% Problem 5c, HW#7
function pb5b
clcs;global rho
X0=[-1;0;0;1.5];
rho=0.00095369; %nondimensional mass of second primary
options=odeset('MaxStep',0.001,'RelTol',1e-5);
[T,Y]=ode45(@cr3b,[0,3*pi],X0,options);
for i=1:length(Y)
 dist(i) = sqrt((Y(i,1)+1-rho)^2 + Y(i,2)^2);
end

end
d) The zero-relative-velocity surface contour can be found from Eq. 10.95. If we plot the surface near L1, L2, and L4 for the Sun-Jupiter system, we obtain the following figures.
function pb5d

close all; clc;

global rho

rho=0.00096369;

% for L2, L1
x=-1.2:0.05:-0.4; y=-0.5:0.05:0.5;

figure(1); L2 = [-0.93246,0]; L1=[-1.06886,0]; L3=[1.00041,0]; L4=[-0.499046,0.8660254];

[X,Y,C]=arry(x,y); surf(X,Y,C)

hold on; plot3(L2(2),L2(1),-2.6,'ro',L1(2),L1(1),-2.6,'ro')

text(L2(2),L2(1),-2.6, L1 , 'FontSize', 12)

axis square; xlabel('y'); ylabel('x')

% for L4
figure(2); x=-1:0.05:1; y=0.5:0.05:1; clear X Y C

[X,Y,C]=arry(x,y);

surf(X,Y,C)

hold on; plot3(L4(2),L4(1),-2.2,'ro');

text(L4(2),L4(1),-2.2, L4 , 'FontSize', 12)

axis square; xlabel('y'); ylabel('x')

function [X,Y,C] = arry(x,y)

global rho

for i=1:length(x)
 for j=1:length(y)
 X(i,:)=x(i); Y(:,j)=y(j);
 r1=sqrt((x(i)-rho)^2+y(j)^2);
 r2=sqrt((x(i)+1-rho)^2+y(j)^2);
 C(i,j)=-0.5*(x(i)^2+y(j)^2)-(1-rho)/r1-rho/r2;
 end
end