Linear functionals & Adjoints

Linear functions $L(V, \mathbb{F}) = \mathbb{F}^*$

dual space.

V^* is a vector space.

Ex: Let V be the set of continuous functions on $[a, b]$
Then $\int_a^b f(x) \, dx$, $(f \in V)$ is a linear functional on V.

Ex: Let u_1, \ldots, u_n be basis for V. Consider the expansion of

$\mathbf{v} = \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_n u_n$

α_i's depend on \mathbf{v}, i.e., $\alpha_i(\mathbf{v})$

$\alpha_i : V \to \mathbb{F}$ is a linear functional.
A notation: (v, v^*) means the operation of applying v^* on v, e.g., $v^*(v)$.

Now if we write

$$v = \sum \lambda_i v_i + \ldots + \alpha_n v_n.$$

The v_i^*'s form a basis for V^* if all functionals on V are linear.

Consider $v^* \in V^*$.

We want to show that $v^* = \sum \beta_j v_j^*$ for some β_j's.

Let $v \in V$. Then

$$(v, v^*) = \left(\sum \lambda_i (v, v_i^*) v_i, v^* \right) = \sum \lambda_i (v, v_i^*) (v_i, v^*)$$

v^* is a linear functional!
\[
\begin{aligned}
&= (v, \sum (v_j^* u_j^*) v_j^*) \\
\Rightarrow &\quad u^* = \sum \beta_j v_j^* \\
&\text{Note that if } (v, u_1^*) = (v, u_2^*) \neq 0 \quad \forall v \\
&\Rightarrow (v, u_1^* - u_2^*) = 0 \quad \forall v \\
&\Rightarrow u_1^* = u_2^*.
\end{aligned}
\]

(independence)

Assume that \exists \beta_j's, not all zero s.t.

\[
\sum \beta_j v_j^* = 0.
\]

But

\[
\beta_k = (v_k, \sum \beta_j v_j^*) = 0 \quad \forall k.
\]
So if \(\{ v_1, \ldots, v_n \} \) basis for \(V \),
\[\{ v_1^*, \ldots, v_n^* \} \text{ basis for } V^* \]

\(v_i^* \) coefficient of vectors in \(V \)
along \(v_i \)

\[\dim V = \dim V^* \]

& \((v_j, v_k^*) = 0 \quad \text{if} \quad k \neq j \)

\((v_j, v_j^*) = 1 \)

So for finite dimensional vector space there is an isomorphism
\[\phi : V \rightarrow V^* \]
Suppose \(\mathbf{V} \) is finite dimensional over \(\mathbb{R} \).

Then \(\mathbf{V} \) is isomorphic to \(\mathbb{R}^n \).

Choose the standard basis:

\[\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n. \]

\[\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \cdots + v_n \mathbf{e}_n. \]

\[\mathbf{v} \in \mathbf{V}. \]

\[(v, v_i^*) = (\mathbf{v}, \mathbf{v}_i^*) = \sum_{j=1}^{n} \beta_j (v, v_j^*) = \sum_{j=1}^{n} \beta_j v_j. \]

\[\mathbf{v}^T \mathbf{v} = \beta^T \mathbf{v} = \beta^T \mathbf{v} \in \mathbb{R}^n. \]
So any linear functional on \mathbb{R}^n can be represented as $c^T v$ for some $c \in \mathbb{R}^n$.

Observation

In fact, this has a natural generalization in terms of an inner product on arbitrary vector spaces (on reals):

$$\langle \cdot , \cdot \rangle : V \times V \rightarrow \mathbb{R}$$

(see chp. 6)

S.t.

\[
\begin{cases}
\langle u, v \rangle \text{ is bilinear (linear in each argument)} \\
\langle u, v \rangle = \langle v, u \rangle \quad \forall u, v \in V \\
\langle u, v \rangle \geq 0 \quad \forall u, v \in V \\
\langle u, v \rangle = 0 \iff u = 0.
\end{cases}
\]
Also notice that if $V = \mathbb{R}^n$ (or \mathbb{R})
then V^* is a copy of \mathbb{R}^n.

The "c" in "c*" in \mathbb{R}^n is the dual of the dual.

We can in fact say that in general

$$(V^*)^* = V$$

the dual of the dual.
Annihilator:

We will see later on that the inner product can be used in spaces (that have an inner product) for example by saying that $(a, b) = 0$ means that $a \perp b$. But we can in fact think about this without introducing an inner product as well:

Let $A \subseteq W$

then annihilator of A is

$$A^\perp = \{ v^* \in W^* \mid (v, v^*) = 0 \; \forall v \in W \}$$
A is a subspace of V^* s.t. if $v_1, v_2 \in A$ then $\forall v \in A$

$$
\begin{align*}
(v_1, v_1^*)&= 0 \\
(v_2, v_2^*) &= 0
\end{align*}
$$

\Rightarrow \quad (v, \alpha v_1^* + \beta v_2^*) = 0 \quad \forall v \in A

If A is a subspace in V with basis v_1, \ldots, v_k then

$$
A^* = \{ v^* \in V^* \mid (v_i, v^*) = 0 \quad \forall i = 1, \ldots, k \}
$$
Theorem: Let $W \subseteq V$ be a subspace. Then
\[\dim W + \dim W^\perp = \dim V. \]

Proof:

- Basis $w_1, \ldots, w_k, v_1, \ldots, v_n.
- \text{Reorder } v_i's \text{ such that } w_1, \ldots, w_k, v_{k+1}, \ldots, v_n \text{ is a basis for } V.

Claim: v_{k+1}, \ldots, v_n is a basis for W^\perp.

Notice that $(w_i, v_l^*) = 0$ when $i = 1, \ldots, k$ and $l = k+1, \ldots, n$.

\[\Rightarrow \text{span } \{v_{k+1}^*, v_{k+2}^*, \ldots, v_n^*\} \subseteq W^\perp \text{ is independent.} \]
Suppose \(w^* \in W^* \) \(\Rightarrow \) \(w^* = \sum_{j=1}^{n} \alpha_j v_j^* \)

But \((v_i^*, w^*) = (v_i^*, \sum_{j=1}^{n} \alpha_j v_j^*) = \sum_{j=1}^{n} \alpha_j (v_i^*, v_j^*) \)

\(= \alpha_i \)

So if \(w^* \in W^* \downarrow \)

\((v_1^*, w^*) = 0 \\
(v_2^*, w^*) = 0 \\
\vdots \\
(v_k^*, w^*) = 0 \)

\(\Rightarrow w^* = \sum_{j=k+1}^{n} \alpha_j v_j^* \)

So \(W^* = \text{span} \{ v_{k+1}^*, \ldots, v_n^* \} \)
We can compose

\[w^* T(v) = w^*(Tv) = (Tv, w^*) \]

by a linear functional on \(\mathfrak{F} V \)
So:

\[T^* : \mathcal{V}^* \rightarrow \mathcal{W}^* \quad \text{defined through } T \]

\[\rightarrow \text{adjoint of } T \]

The defining property of the adjoint is that

\[(Tv, w^*) = (v, T^*w^*) \]
Let us look at \mathbb{R}^n, \mathbb{R}^m for intuition.

$A \in \mathbb{R}^{m \times n}$

$\mathbb{R}^n \xrightarrow{w^*} (\mathbb{R}^n)^* \xrightarrow{A^*} (\mathbb{R}^m)^* \xrightarrow{} \mathbb{R}^m$

$(w^*, Av) = (v, A^*w^*)$

$w^T(Av) = v^T A^* w^*$

$A^* = A^T$!
Prop.

Let \(T \in \mathbb{L}(V, W) \) & \(T^* \) is the adjoint of \(T \).

Then

\[R(T) \perp = \ker(T^*) \]

\[R(T^*) \perp = \ker(T) \]

Proof: Suppose \(w^* \in R(T) \perp \)

\[(Tw, w^*) = 0 \quad \forall \ v \in V \]

\[(v, T^* w^*) = 0 \quad \forall \ v \in V \]

\[\Rightarrow T^* w^* = 0 \iff w^* \in \ker(T^*) \]
Similarly to show

\[R(T^*)^\perp = \ker(T) \]

we can start with \(T^* \) and apply the first part

by noticing that \(T^{**} = T \).

Or \(v \in R(T^*)^\perp \)

Then \((T^{\ast\ast} w^*, v) = 0 \) \(\forall w^* \in W^* \)

\((w^*, T v) = 0 \) \(\forall w^* \in W^* \)

\(\Rightarrow T v = 0 \) \(\Rightarrow v \in \ker(T) \)
When a linear operator has a property that the adjoint of the operator is the same as the operator, the operator is called *self-adjoint*.

mostly used in the context of inner products.