Once we fix V & W, we can consider the "set" of all linear operators from V to W. Denote this set $\mathcal{L}(V, W)$.

Guess what? This set is a vector space!

$$S, T \in \mathcal{L}(V, W)$$

$$\begin{cases}
S + T \in \mathcal{L}(V, W) \\
\alpha S \in \mathcal{L}(V, W)
\end{cases}$$

When $W = F \rightarrow \mathcal{L}(V, W) = V^*$

When $W = V \rightarrow \mathcal{L}(V, V) = \mathcal{L}(V)$

The members of V^* are called linear functionals on V.

Dual space:
Consider $L(V)$, the vector space of all linear operators from V to V.

Then we can define "multiplication" between elements in $L(V)$ by using composition:

Let $S, T \in L(V)$

Then

$$ST(v) = S(Tv).$$

Note that $ST \in L(V)$ if $S, T \in L(V)$

$$ST(\alpha v + \beta w) = \alpha STv + \beta STw.$$
Moreover we can show that

\[R(ST) = (RS)T \] \{ associative \}

\[R(S+T) = RS + RT \] \{ distributive \}

\[(R+S)T = RT + ST \]

So we have

\[\alpha \quad \circ \quad \alpha' \quad T \]

\[S + T \]

\[\text{distributive/associative} \]

\[L(V) \]

\[\text{invertible linear operators} \]
This is called an algebra.

(Note that multiplication is not necessarily commutative.)

In this algebra there is a subset S such that:
- The elements have an inverse.

$GL(V) = \text{general linear group on } V$

\[
\downarrow
\]

\[= \{ S \in L(V) \mid S \text{ is invertible} \}\]

A group in the algebra $L(V)$, S such that:

$ST = TS, S = I$
Def: \(S, T \in \text{GL}(V) \) are called conjugates if \(\exists R \in \text{GL}(V) \) s.t.

\[
T = RSR^{-1}
\]

When we specialize this to \(V = \mathbb{R}^n \), then we call two matrices \(A, B \in \mathbb{R}^{n \times n} \) conjugates (or similar) if \(\exists C \in \text{GL}(\mathbb{R}^n) \) s.t.

\[
A = CBC^T
\]
In the case of matrices AB has a nice interpretation:

$$
AB = A \begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_p
\end{bmatrix}
\begin{bmatrix}
 a_1^T \\
 a_2^T \\
 \vdots \\
 a_m^T
\end{bmatrix} = \left[A b_1, A b_2, \ldots, A b_p \right]_{m \times p}.
$$

Columns of AB are linear combinations of columns of A, b:

$$
AB = \begin{bmatrix}
 a_1^T \\
 a_2^T \\
 \vdots \\
 a_m^T
\end{bmatrix} B = \begin{bmatrix}
 a_1^T B \\
 a_2^T B \\
 \vdots \\
 a_m^T B
\end{bmatrix}
$$
What is \(a_i^T B = [x_1 \ldots x_n] \)

\[
= \sum_i x_i r_i(B) \quad \text{linear combination of rows of } B.
\]

Thus: if \(A \in \mathbb{R}^{n \times n} \) is invertible then \(r(A) = n \).

If \(A \in \text{GL}(n) \), then \(\exists B \) s.t. \(\begin{array}{c} \text{BA = I} \\ \text{row rank = n} \end{array} \)

\(\#	ext{ of linearly independent columns (or rows) of } A \).

Row rank is not bigger than row rank of \(A \) \(\Rightarrow \) row rank of \(A \) is at least \(n \)!

(can't be bigger than \(n \) either!)
Suppose we are given a linear operator T on the finite dimensional vector space $T \in \mathcal{L}(W, W)$

$$T: V \rightarrow W$$

$$\{v_1, v_2, \ldots, v_m\} \rightarrow \{w_1, \ldots, w_m\}$$

Basis for V

Basis for W

Then

$$T v_i = a_{i1} w_1 + a_{i2} w_2 + \cdots + a_{im} w_m$$

$$\begin{bmatrix}
\vdots & a_{1i} & \vdots \\
\vdots & a_{2i} & \vdots \\
\vdots & a_{mi} & \vdots \\
\end{bmatrix}
= A_{T, v_i, W}$$

basis in W

representation of $T v_i$ in $\mathcal{L}(V, \mathcal{L}(W, W))$ via w_1, \ldots, w_m
So A_T depends on the choice of v and w.

Let us use the notation $C_w x$: the coordinates of x using the basis $w = \{ v_1, \ldots, v_m \}$.

So if $x = a_1 v_1 + a_2 v_2 + \cdots + a_m v_m$

Then $C_w x = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}$

$\Rightarrow C_w^T x = A_{T,v,w} C_w x$

a linear operator T and the matrix representation of T
Let \(X \in \mathbb{V} \), a vector space over \(\mathbb{R} \).

\[T \in \mathcal{L}(\mathbb{V}) \]

and two bases \(\mathcal{B} = \{ v_1, v_2, \ldots, v_n \} \)

\(\mathcal{B} = \{ w_1, w_2, \ldots, w_n \} \).

Then:

\[\begin{align*}
C_v &: \mathbb{V} \rightarrow \mathbb{R}^n \\
C_w &: \mathbb{V} \rightarrow \mathbb{R}^n
\end{align*} \]

two different isomorphisms.

What is \(A_{T,v} \) in terms of \(A_{T,w} \)?

Note that

\[\begin{array}{c}
\mathcal{C}_w \downarrow \mathbb{V} \\
\mathbb{R}^n \downarrow \downarrow \downarrow \\
\mathcal{T} \downarrow \downarrow \downarrow \\
\mathcal{C}_v \downarrow \downarrow \downarrow \\
\mathbb{R}^n \downarrow \downarrow \downarrow \\
\downarrow \downarrow \downarrow \\
A_{T,v,w,v}
\end{array} \]

\(\Leftrightarrow \) short hand for \(A_{T,w,v} \)
So maybe we need to go from C_W to C_V.

$x \in V$

$C_V x \quad C_W x$

Taking basis v to v

So if we have the rep. in V of x

we can apply $C_W C_V$ to get the rep. in W of x.
\[V \rightarrow V \]
\[C_{v} \downarrow \quad R^{n} \rightarrow \quad A_{T,w} \downarrow \quad C_{v}C_{w}^{-1} \]
\[C_{v}C_{w}^{-1} \downarrow \quad R^{n} \rightarrow \quad A_{T,v} \]

\[A_{T,w} = C_{v} \circ A_{T,v} \circ C_{v,w} \]

OR

\[A_{T,v} = C_{v,w} \circ A_{T,w} \circ C_{w,v} \]

a nonsingular map taking \(w \rightarrow v \) is a bijection.
Two matrices are called similar if they represent the same T in different basis:

$$A_1 = A_{T,v}$$
$$A_2 = A_{T,w}$$

Thus A_1 and A_2 are similar if

$$A_1 = C^{-1} A_2 C$$

for some $C \in GL(n)$.

A similar def. can stated for linear operators $S, T \in L(V)$ are similar (or conjugate under $GL(V)$) if $\exists R \in GL(V)$ s.t.

$$T = R S R^{-1}$$
Recall that \(R^{m \times n} \):

\[
\begin{align*}
\mathcal{N}(A) &= \{ x \in \mathbb{R}^n \mid Ax = 0 \} \\
\mathcal{R}(A) &= \{ Ax \mid x \in \mathbb{R}^n \}
\end{align*}
\]

for a linear operator, we can define analogous concepts:

\[
T : V \to W , \quad T \in \mathcal{L}(V,W)
\]

\[
\ker(T) = \{ v \in V \mid Tv = 0 \}
\]

\[
\text{Range}(T) = \{ w \in W \mid w = Tv \text{ for some } v \in V \}
\]

We have seen that \(\mathcal{N}(A) \) & \(\mathcal{R}(A) \) are subspaces of \(\mathbb{R}^n \) & \(\mathbb{R}^m \) respectively—similar statements hold true for linear operators.
\[f(T) = \text{rank of the linear operator } T \]
\[= \text{dimension of } \text{Range}(T) \]
\[V(T) = \text{dimension of } \text{Ker}(T) \]
\[= \text{nullity of the linear operator } T. \]

Then: let \(V \) be a finite-dimensional vector space
& \(W \) be an arbitrary vector space &
\(T \in \mathcal{L}(W, W) \).

Then
\[f(T) + V(T) = \dim V \]
Proof: Let \(\dim V = n \).

Let \(\text{Ker}(T) \) admit the basis \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_l \) and linearly independent in \(V \).

Add \(\mathbf{v}_{l+1}, \mathbf{v}_{l+2}, \ldots, \mathbf{v}_n \) from the basis in \(V \).

So \(\{ \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_l, \mathbf{v}_{l+1}, \mathbf{v}_{l+2}, \ldots, \mathbf{v}_n \} \) is a basis for \(V \).

Is it true that \(k = \text{rank}(T) \)?

\[\Rightarrow \dim \text{Range}(T) \]

Take \(\mathbf{w} \in \text{Range}(T) : \mathbf{w} = T(\mathbf{v}) \) for some \(\mathbf{v} \in V \).

\[\mathbf{w} = \sum_{i=1}^{l} \alpha_i \mathbf{v}_i + \sum_{j=l+1}^{n} \beta_j \mathbf{v}_j \]

\[\Rightarrow \mathbf{w} = T \left(\sum_{i=1}^{l} \alpha_i \mathbf{v}_i + \sum_{j=l+1}^{n} \beta_j \mathbf{v}_j \right) = \sum_{i=0}^{n} \beta_j \mathbf{T} \mathbf{v}_j \]
So \(\{ T u_{l+1}, T u_{l+2}, \ldots, T u_n \} \) span \(\text{Range}(T) \).

What about independence?

Suppose \(\exists \ c_i \) is not all zero s.t.

\[
\sum_{i=l+1}^{n} c_i T u_i = T \left(\sum_{i=l+1}^{n} c_i u_i \right) = 0.
\]

\[
\Rightarrow \sum_{i=l+1}^{n} c_i u_i \in \text{Ker}(T) \quad \text{not all } c_i \text{'s zero}.
\]

But this says that

\[
\sum_{i=l+1}^{n} c_i u_i = \sum_{j=1}^{l} d_j v_j
\]

\[
\Rightarrow \sum_{j=1}^{l} d_j v_j - \sum_{i=l+1}^{n} c_i u_i = 0 \quad \Rightarrow \quad \text{since } v_j \text{'s & } u_i \text{'s are linearly independent}.
\]

\[
\text{not all } c_i \text{'s & } d_j \text{'s zero}.
\]
Note that if

\[v_1 - v_2 \in \text{Ker}(T). \]

Then \[T(v_1 - v_2) = 0 \Rightarrow TV_1 = TV_2. \]

So \(T \) assigns the same value to \(v_1 \)!

\[T : W \rightarrow W \]

can be written as:

\[T : W \rightarrow W/\text{Ker}(T) \]

\[\dim W/\text{Ker}(T) \rightarrow T(W). \]

\[\dim W/\text{Ker}(T) = \dim \text{of } T(W). \]

\[n - \nu(T) \rightarrow \chi(T). \]
This means that if $T \in \mathcal{L}(V)$ is finite dim.

\[\nu(T) = 0 \Rightarrow \dim \ker T = \dim \operatorname{range} T = 0 \]

\[\Rightarrow V = \operatorname{Range}(T) \]

The map T is bijective & invertible.