On Strong Structural Controllability of Networked Systems: A Constrained Matching Approach

Airlie Chapman and Mehran Mesbahi

Robotics, Aerospace and Information Networks Lab (RAIN Lab)
Distributed Space Systems Lab (DSSL)

University of Washington
The Network in the Dynamics

General Dynamics

\[
\dot{x}(t) = f(G, x(t), u(t)) \\
y(t) = g(G, x(t), u(t))
\]

Effective interfaces:

<table>
<thead>
<tr>
<th>Network</th>
<th>System Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective resistance</td>
<td>\mathcal{H}_2 norm</td>
</tr>
<tr>
<td>Automorphisms</td>
<td>Homogeneity</td>
</tr>
<tr>
<td>Graph products/factorization</td>
<td>Controllability composition/decomposition</td>
</tr>
<tr>
<td>Bipartite Matching</td>
<td>Structural controllability</td>
</tr>
</tbody>
</table>
The Network in the Dynamics

- First Order, Linear Time Invariant model

\[
\dot{x}_i(t) = \sum_{i \sim j} \pm w_{ij} x_j(t) + u_i(t)
\]

\[
y_i(t) = x_i(t)
\]

Dynamics

\[
\dot{x}(t) = A(G)x(t) + B(S)u(t)
\]

\[
y(t) = C(R)x(t)
\]

- \(A(G)\): e.g. Z-matrix, Laplacian (\(w_{ii} = -\sum w_{ij}\)) and Advection matrices (\(w_{ii} = -\sum w_{ji}\))
- Input node set \(S = \{v_i, v_j, \ldots\}\), \(B(S) = [e_i, e_j, \ldots]\)
- Output node set \(R = \{v_p, v_q, \ldots\}\), \(C(R) = [e_p, e_q, \ldots]^T\)
(1) General Controllability: Based on $A(\cdot)$ and G

(2) Structural Controllability: Based on G alone
Structural Controllability

- A pair \((A(G), B(S))\) is weak/strong structurally controllable (s-controllable), with weak/strong inputs \(S\), if over every possible weighting of graph \(G\) it has one/all controllable realization(s)

Conceived: Lin ’74, Mayeda and Yamada ’79
Recently: Liu et al. ’11, Reinschke et al. ’92, Bowden et al. ’12
A pattern matrix A is a matrix composed of zeros and crosses. A realization A of A maintains the zero structure.

$A(G)$ defined s.t. one realization is the adjacency matrix $A(G)$ (Similarly for $B(S)$ and $C(R)$).

Example:

\[
A(G) = \begin{bmatrix}
\times & 0 & \times \\
\times & 0 & \times \\
0 & \times & 0
\end{bmatrix},
B(S) = \begin{bmatrix}
0 \\
\times \\
0
\end{bmatrix},
C(R) = \begin{bmatrix}
0 \\
0 \\
\times
\end{bmatrix}
\]

A pair $(A(G), B(S))$ is weak/strong s-controllable, with weak/strong inputs S, if it has one/all controllable realization(s) (A, B).
Bipartite Representation

- Bipartite representation $\mathcal{H} = (V^+, V^-, E)$ of $A(G) \in \mathbb{R}^{p \times q}$

$$A(G) = \begin{bmatrix} V^+ \\ \times & 0 & \times \\ \times & 0 & \times \\ 0 & \times & 0 \end{bmatrix} V^-$$
(A, B) is controllable iff \(\text{rank} [A - \lambda I, B] = n \) for all eigenvalues \(\lambda \) of \(A \)

Combinatorial Criteria:

\(A \) has a \(t \)-matching \(\implies \) \(\exists A \in A \) with \(\text{rank}(A) \geq t \)

Rank Criteria:

\(A \) has a \(t \)-matching if there are \(t \) edges in \(\mathcal{H} = (V^+, V^-, E) \) between \(I^+ \subseteq V^+ \) and \(I^- \subseteq V^- \) \((|I^+| = |I^-| = t)\) where no two edges share a node

Nodes in \(V^- \setminus I^- \) are called unmatched

![Diagram](image)
Weak S-Controllability (Liu et al.)

Weak Inputs

S is weak iff A has an $(n - |S|)$-matching with S unmatched and input accessible.

$S = \{2\}, \ R = \{3\}$ are weak
Weak Features

Weak Inputs

S is weak iff A has an $(n - |S|)$-matching with S unmatched and input accessible.

- Efficient algorithms for maximum bipartite matching
 - Deterministic $O\left(\sqrt{|V||E|}\right)$, Probabilistic $O\left(|V|^{2.376}\right)$

- S is generically controllable but real-world systems can be atypical, e.g., undirected unweighted consensus
 - Adding edges tends to improve weak s-controllability

A self-damped network

$\begin{align*}
 v_1^+ & \quad v_1^- \\
 v_2^+ & \quad v_2^- \\
 v_3^+ & \quad v_3^-
\end{align*}$
(A, B) is controllable iff \(\text{rank}[A - \lambda I, B] = n \) for all eigenvalues \(\lambda \) of \(A \)

Combinatorial Criteria:

- \(A \) has a \(t \)-matching
- \(A \) has a constrained \(t \)-matching

Rank Criteria:

\[
\exists A \in A \text{ with } \text{rank}(A) \geq t
\]
\[
\forall A \in A, \text{ rank}(A) \geq t
\]

- A \(t \)-matching is **constrained** if it is the only \(t \)-matching between \(I^+ \) and \(I^- \)
- A matching is **\(V_s \)-less** if it contains no edges corresponding to self loops, i.e., \(\{ v_i^+, v_i^- \} \).

Unconstrained 3-matching

Unconstrained \(V_s \)-less 3-matching

\(V_s = \{1\} \)
(A, B) is controllable iff $\text{rank}[A - \lambda I, B] = n$ for all eigenvalues λ of A

Combinatorial Criteria:
- A has a t-matching
- A has a constrained t-matching

Rank Criteria:
- $\exists A \in A$ with $\text{rank}(A) \geq t$
- $\forall A \in A$, $\text{rank}(A) \geq t$

- A t-matching is **constrained** if it is the only t-matching between I^+ and I^-
- A matching is V_s-less if it contains no edges corresponding to self loops, i.e., $\{v_i^+, v_i^-, v_i^+, v_i^-\}$.
- $V_s = \{1\}$

Unconstrained 3-matching

Constrained V_s-less 3-matching
Strong S-Controllability

Strong inputs

\(S \) is strong iff \(A \) has a constrained \((n - |S|)\)-matching with \(S \) unmatched and \(A_x \) has a constrained \(V_s \)-less \((n - |S|)\)-matching with \(S \) unmatched.

- Pattern matrix \(A_x \) is formed by placing crosses along the diagonal of \(A \)

\[
\begin{align*}
A & \quad & A & \quad & A & \quad & A_x \\
\mathbf{v}_1^- & \quad & \mathbf{v}_1^- & \quad & \mathbf{v}_1^- & \quad & \mathbf{v}_1^- \\
\mathbf{v}_2^- & \quad & \mathbf{v}_2^- & \quad & \mathbf{v}_2^- & \quad & \mathbf{v}_2^- \\
\mathbf{v}_3^- & \quad & \mathbf{v}_3^- & \quad & \mathbf{v}_3^- & \quad & \mathbf{v}_3^- \\
\mathbf{v}_3^+ & \quad & \mathbf{v}_3^+ & \quad & \mathbf{v}_3^+ & \quad & \mathbf{v}_3^+ \\
\end{align*}
\]

\(S = \{2\} \) is strong

\(R = \{3\} \) is not
A strongly controllable input set S can be considered a type of controllability robustness.

For connected networks, adding edges tends to worsen strong s-controllability.

Algorithms:

- Golumbic (2001) - $O(|V| + |E|)$ to check a matching is constrained.
- Golumbic (2001) - NP-complete to find a maximum constrained matching.
- Misha (2011) - Polynomial time algorithm to approximate a maximum constrained matching. Can do no better than $\frac{1}{2^{3\sqrt{9}}}|V|^{\frac{1}{3} - \varepsilon}$ for any $\varepsilon > 0$.
- We have an $O(|V|^2)$ algorithm to check if S is strong and to find a (not-necessarily minimal) strong input set.
Self-damped Undirected Networks

- Tested all undirected connected graphs for $n \leq 10$
- For S a minimum cardinality weak/strong set, $n_D := \frac{|S|}{|V|}$

![Graph showing n_D vs n]

- Smallest weak/strong S is a lower/upper bound on the smallest controllable input set for an arbitrary realization
- The only strong single input is the end nodes of a path graph
- The only realization requiring a strong $n - 1$ input set is the complete graph
Directed Erdős-Rényi random networks

- Randomly generated on n nodes with a directed edge $(i,j) \in E$ existing with probability p and mean degree $\langle k \rangle = 2np$
- Tested 1200 graphs on 20 nodes for each $\langle k \rangle = 2, 4, \ldots, 20$

$k_c = 2 \log n \approx 6$ is a sharp threshold for the disoriented connectedness of Erdős-Rényi random networks

$k = k_c$ presents on average the minimum strong input set
Directed Erdős-Rényi random networks

- Randomly generated on n nodes with a directed edge $(i,j) \in E$ existing with probability p and mean degree $\langle k \rangle = 2np$
- Tested 1200 graphs on 20 nodes for each $\langle k \rangle = 2, 4, \ldots, 20$

\[k_c = 2 \log n \approx 6 \text{ is a sharp threshold for the disoriented connectedness of Erdős-Rényi random networks} \]

\[k = k_c \text{ presents on average the minimum strong input set} \]
Conclusion

- Linked strong s-controllability to a bipartite matching property and as such illustrated the computational challenges of the problem.
- Compared features of weak and strong inputs.
- Provided an efficient algorithm to generate strong inputs.
- Future Direction: Output weak and strong s-controllability, degree of controllability, edge s-controllability.
Strong S-Controllability: Rough Proof

Rank test

\((A, B)\) is controllable iff \([A - \lambda I, B]\) has full column rank for every eigenvalue \(\lambda\) of \(A\).

- \([A, B]\) is full rank iff \(\exists\) permutation matrices \(P_1\) and \(P_2\), s.t.,

\[
P_1 [A, B] P_2 = \begin{bmatrix}
\otimes & \cdots & \otimes & \times & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \times & \ddots & \vdots & \vdots & \vdots \\
\otimes & \cdots & \otimes & \cdots & \cdots & \otimes & \times
\end{bmatrix},
\]

where \(\otimes\)-elements can be either zero or crosses

For \(\lambda = 0\)

- \([A, B(S)]\) has this form iff \([A, B(S)]\) has a constrained \(n\)-matching
- Removing \(S\) rows of \([A, B(S)]\) leaves a constrained \((n - |S|)\)-matching
- Implies \(A\) has a constrained \((n - |S|)\)-matching with \(S\) unmatched
- Similarly for \(\lambda = \times\), and \(A_{\times}\)
Self-damped Undirected Networks

Self-damped

Given a maximum constrained self-less matching of A_x with unmatched nodes S. Then, S is strong with minimum cardinality.

- Tested all undirected connected graphs for $n \leq 10$
- For S a minimum cardinality strong set, $n_D := |S|/|V|$

The only strong single input for a connected self-damped undirected network is the end nodes of a path graph.

The only connected self-damped undirected network requiring a strong $n-1$ input set is the complete graph.
Directed Erdős-Rényi random networks

- Randomly generated on n nodes with an edge $(i,j) \in E$ existing with probability p and mean degree $\langle k \rangle = 2np$
- Tested 1200 graphs on 20 nodes for each $\langle k \rangle = 2, 4, \ldots, 20$

- $k_c = 2\log n \approx 6$ is a sharp threshold for the disoriented connectedness of Erdős-Rényi random networks
- $k = k_c$ presents on average the minimum strong input set