On the Controllability and Observability of Cartesian Product Networks

Airlie Chapman, Marzieh Nabi-Abdolyousefi and Mehran Mesbahi

Distributed Space Systems Lab (DSSL)

University of Washington

The Network in the Dynamics

General Dynamics

$$\dot{x}(t) = f(\mathcal{G}, x(t), u(t))$$

$$y(t) = g(\mathcal{G}, x(t), u(t))$$

Network	System Dynamics	
Graph Spectrum	Rate of convergence	
Random Graphs	Stochastic Matrices	
Automorphisms	Homogeneity	
Graph Factorization	Decomposition	

The Network in the Dynamics

Dynamics

$$\dot{x}(t) = -A(\mathcal{G})x(t) + B(S)u(t)$$

$$y(t) = C(R)x(t)$$

• First Order, Linear Time Invariant model

$$\dot{x}_{i}(t) = \left(rw_{ii} + \sum_{j \neq i} f(w_{ij}, w_{ji})\right) x_{i}(t) + \sum_{j \neq i} g(w_{ij}, w_{ji}) x_{j}(t) + u_{i}(t)$$
$$y_{i}(t) = x_{i}(t),$$

where $r \in \mathbb{R}$, $f(\cdot)$ and $g(\cdot)$ are real-valued functions, f(0,0) = g(0,x) = 0.

- e.g., Laplacian (r = 0, f(x, y) = g(x, y) = x), Adjacency, Advection matrices
- Input node set $S = \{v_i, v_j, ...\}, B(S) = [e_i, e_j, ...]$
- Output node set $R = \{v_p, v_q, \dots\}, C(R) = [e_p, e_q, \dots]^T$

Graph Products: Networks within Networks

- ullet Many ways to compose graphs ${\cal G}$ and ${\cal H}$
 - ullet Cartesian product $\mathcal{G} \square \mathcal{H}$
 - Tensor product $\mathcal{G} \times \mathcal{H}$
 - Strong product $\mathcal{G} \boxtimes \mathcal{H}$
 - Lexicographic product $\mathcal{G} \bullet \mathcal{H}$
 - Rooted product $\mathcal{G} \circ \mathcal{H}$
 - Corona product $\mathcal{G} \odot \mathcal{H}$
 - Star product $\mathcal{G} \star \mathcal{H}$
- How does modularity of the network manifest itself as modularity within the state dynamics?

Cartesian Product:
$$(Graphs, \Box) \rightarrow (Dynamics, \otimes)$$

Graph Cartesian Product

- Cartesian product $\mathcal{G} \square \mathcal{H}$
- Vertex set: $V(\mathcal{G} \square \mathcal{H}) = V(\mathcal{G}) \times V(\mathcal{H})$
- Edge set: $(\mathbf{x_1}, \mathbf{x_2}) \sim (\mathbf{y_1}, \mathbf{y_2})$ is in $\mathcal{G} \square \mathcal{H}$
 - if $x_1 \sim y_1$ and $x_2 = y_2$ or $x_1 = y_1$ and $x_2 \sim y_2$

Graph Cartesian Product

- Cartesian product $\mathcal{G} \square \mathcal{H}$
- Vertex set: $V(\mathcal{G} \square \mathcal{H}) = V(\mathcal{G}) \times V(\mathcal{H})$
- Edge set: $(\mathbf{x_1}, \mathbf{x_2}) \sim (\mathbf{y_1}, \mathbf{y_2})$ is in $\mathcal{G} \square \mathcal{H}$
 - if $x_1 \sim y_1$ and $x_2 = y_2$ or $x_1 = y_1$ and $x_2 \sim y_2$

Graph Cartesian Product

- Cartesian product $\mathcal{G} \square \mathcal{H}$
- Vertex set: $V(\mathcal{G} \square \mathcal{H}) = V(\mathcal{G}) \times V(\mathcal{H})$
- Edge set: $(\mathbf{x_1}, \mathbf{x_2}) \sim (\mathbf{y_1}, \mathbf{y_2})$ is in $\mathcal{G} \square \mathcal{H}$
 - if $x_1 \sim y_1$ and $x_2 = y_2$ or $x_1 = y_1$ and $x_2 \sim y_2$

Controllability

- Dynamics are controllable if for any x(0), x_f and t_f there exists an input u(t) such that $x(t_f) = x_f$.
- Significant in networked robotic systems, human-swarm interaction, network security, quantum networks.
- Challenging to establish for large networks
- Known families of controllable graphs for selected inputs
 - Paths (Rahmani et al. '09)
 - Circulants (Nabi-Abdolyousefi et al. '12)
 - Grids (Parlengeli et al. '11)
 - Distance regular graphs (Zhang et al. '11)

Input and Output Set Product

Controllability Factorization - Product Control

Consider

$$\dot{x}(t) = -A(\prod_{\square} G_i)x(t) + B(\prod_{\times} S_i)u(t)$$
$$y(t) = C(\prod_{\times} R_i)x(t)$$

is controllable/observable where $A(\prod_{i} \mathcal{G}_i)$ has simple eigenvalues if and only if

$$\dot{x}_i(t) = -A(\mathcal{G}_i)x_i(t) + B(S_i)u_i(t)$$

$$y_i(t) = C(R_i)x_i(t)$$

is controllable/observable for all i.

Controllability Factorization - Idea of the Proof

Popov-Belevitch-Hautus (PBH) test

(A,B) is uncontrollable if and only if there exists a left eigenvalue-eigenvector pair (λ,ν) of A such that $\nu^T B=0$.

Eigenvalue and eigenvector relationship:

	$A(\mathcal{G}_1)$	$A(\mathcal{G}_2)$	$A(\mathcal{G}_1 \square \mathcal{G}_2)$
Eigenvalue	λ_i	μ_j	$\lambda_i + \mu_j$
Eigenvector	Vi	иj	$v_i \otimes u_j$

- Also $(v_i \otimes u_i)^T (B(S_1) \otimes B(S_2)) = v_i^T B(S_1) \otimes u_i^T B(S_2)$
- The proof follows from these observations.

Controllability Factorization - Layered Control

Consider

$$\dot{x}(t) = -A(\prod_{\square} G_i)x(t) + B(\prod_{\times} S_i)u(t)$$
$$y(t) = C(\prod_{\times} R_i)x(t)$$

is controllable/observable where $A(G_i)$'s are diagonalizable and $S_i = R_i = V(G_i)$ for i = 2, ..., n if and only if

$$\dot{x}_1(t) = -A(\mathcal{G}_1)x_1(t) + B(S_1)u_1(t) y_1(t) = C(R_1)x_1(t)$$

is controllable/observable.

Controllability Factorization - Layered Control

Uncontrollability through Symmetry

Proposition (Rahmani and Mesbahi 2006)

 $(A(\mathcal{G}),B(S))$ is uncontrollable if there exists an automorphism of \mathcal{G} which fixes all inputs in the set S (i.e., S is not a determining set.)

The determining number of a graph \mathcal{G} , denoted $Det(\mathcal{G})$, is the smallest integer r so that \mathcal{G} has a determining set S of size r.

Corollary

 $(A(\mathcal{G}), B(S))$ is uncontrollable if $|S| < Det(\mathcal{G})$.

Breaking Symmetry

Automorphism group for graph Cartesian products

The automorphisms for a connected $\mathcal G$ is generated by the automorphisms of its prime factors.

Proposition: Smallest input set for graph Cartesian products

For controllable pairs $(A(\mathcal{G}_1), B(S_1))$ and $(A(\mathcal{G}_2), B(S_2))$ where $|S_1| = Det(\mathcal{G}_1)$ and $|S_2| = 1$. Then $S = S_1 \times S_2$ is the smallest input set such that $(A(\mathcal{G}_1 \square \mathcal{G}_2), B(S))$ is controllable.

Graph Factorization

A graph can be factored as well as composed...

Theorem (Sabidussi 1960)

Every connected graph can be factored as a Cartesian product of prime graphs. Moreover, such a factorization is unique up to reordering of the factors.

- ullet $\mathcal{G}=\mathcal{G}_1\square\mathcal{G}_2$ prime implies that either \mathcal{G}_1 or \mathcal{G}_2 is \mathcal{K}_1
 - Number of prime factors is at most $\log |\mathcal{G}|$
- Algorithms
 - Feigenbaum (1985) $\mathcal{O}\left(|V|^{4.5}\right)$
 - Winkler (1987) $\mathcal{O}\left(|V|^4\right)$ from isometrically embedding graphs by Graham and Winkler (1985)
 - Feder (1992) $\mathcal{O}(|V||E|)$
 - Imrich and Peterin (2007) $\mathcal{O}(|E|)$
 - C++ implementation by Hellmuth and Staude

Example: Filtering on Social Product Networks

- (a) Father
- (b) Mother (c) Child 1
- (d) Child 2

Intra-Family Network

Product Control:

 \implies Father 14

Layered Control:

 \implies All fathers or all of family 14

Inter-Family Network

Full Network

Conclusion

- Explored composition/factorization of dynamic network into smaller dynamic factor-networks
- Presented a factorization of controllability a product and layered approach
- Linked the factors symmetry to smallest controllable input set
- Future work involves examining other graph products in network dynamics