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The Network in the Dynamics

General Dynamics

ẋ(t) = f (G,x(t),u(t))
y(t) = g(G,x(t),u(t))

Network System Dynamics

Graph Spectrum Rate of convergence
Random Graphs Stochastic Matrices
Automorphisms Homogeneity

Graph Factorization Decomposition
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The Network in the Dynamics

Dynamics

ẋ(t) =−A(G)x(t)+B(S)u(t)

y(t) = C (R)x(t)

First Order, Linear Time Invariant model

ẋi (t) =

(
rwii + ∑

j 6=i

f (wij ,wji )

)
xi (t)+ ∑

j 6=i

g(wij ,wji )xj (t)+ui (t)

yi (t) = xi (t),

where r ∈ R, f (·) and g(·) are real-valued functions, f (0,0) = g(0,x) = 0.

e.g., Laplacian (r = 0, f (x ,y) = g(x ,y) = x), Adjacency, Advection matrices

Input node set S = {vi ,vj , . . .}, B(S) = [ei ,ej , . . . ]

Output node set R= {vp,vq, . . .}, C (R) = [ep,eq, . . . ]
T
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Graph Products: Networks within Networks

Many ways to compose graphs G and H
Cartesian product G�H
Tensor product G×H
Strong product G�H
Lexicographic product G •H
Rooted product G ◦H
Corona product G�H
Star product G ?H

How does modularity of the network
manifest itself as modularity within the state
dynamics?

Cartesian Product: (Graphs,�) → (Dynamics,⊗)
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Graph Cartesian Product

Cartesian product G�H
Vertex set: V (G�H) = V (G)×V (H)
Edge set: (x1,x2)∼ (y1,y2) is in G�H

if x1 ∼ y1 and x2 = y2 or x1 = y1 and x2 ∼ y2
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Controllability

Dynamics are controllable if for any x(0), xf and tf there exists an input
u(t) such that x(tf ) = xf .

Signi�cant in networked robotic systems, human-swarm interaction, network
security, quantum networks.

Challenging to establish for large networks

Known families of controllable graphs for
selected inputs

Paths (Rahmani et al. '09)
Circulants (Nabi-Abdolyouse� et al. '12)
Grids (Parlengeli et al. '11)
Distance regular graphs (Zhang et al. '11)
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Input and Output Set Product
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Controllability Factorization - Product Control

Consider

ẋ(t) =−A(∏
�

Gi )x(t)+B(∏
×
Si )u(t)

y(t) = C (∏
×
Ri )x(t)

is controllable/observable where A(∏�Gi ) has simple eigenvalues if and only if

ẋi (t) =−A(Gi )xi (t)+B(Si )ui (t)

yi (t) = C (Ri )xi (t)

is controllable/observable for all i .
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Controllability Factorization - Idea of the Proof

Popov-Belevitch-Hautus (PBH) test

(A,B) is uncontrollable if and only if there exists a left eigenvalue-eigenvector pair
(λ ,v) of A such that vTB = 0.

Eigenvalue and eigenvector relationship:

A(G1) A(G2) A(G1�G2)
Eigenvalue λi µj λi +µj

Eigenvector vi uj vi ⊗uj

Also (vi ⊗ui )
T (B(S1)⊗B(S2)) = vT

i B(S1)⊗uT
i B(S2)

The proof follows from these observations.
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Controllability Factorization - Layered Control

Consider

ẋ(t) =−A(∏
�

Gi )x(t)+B(∏
×
Si )u(t)

y(t) = C (∏
×
Ri )x(t)

is controllable/observable where A(Gi )’s are diagonalizable and Si = Ri = V (Gi ) for
i = 2, . . . ,n if and only if

ẋ1(t) =−A(G1)x1(t)+B(S1)u1(t)

y1(t) = C (R1)x1(t)

is controllable/observable.
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Controllability Factorization - Layered Control
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Uncontrollability through Symmetry

Proposition (Rahmani and Mesbahi 2006)

(A(G),B(S)) is uncontrollable if there exists an automorphism of G which �xes all
inputs in the set S (i.e., S is not a determining set.)

The determining number of a graph G, denoted Det(G), is the smallest integer r
so that G has a determining set S of size r .

Corollary

(A(G),B(S)) is uncontrollable if |S |< Det(G).
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Breaking Symmetry

Automorphism group for graph Cartesian products

The automorphisms for a connected G is generated by the automorphisms of its
prime factors.

Proposition: Smallest input set for graph Cartesian products

For controllable pairs (A(G1),B(S1)) and (A(G2),B(S2)) where |S1|= Det(G1)
and |S2|= 1. Then S = S1×S2 is the smallest input set such that
(A(G1�G2),B(S)) is controllable.
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Graph Factorization

A graph can be factored as well as composed...

Theorem (Sabidussi 1960)

Every connected graph can be factored as a Cartesian product of prime graphs.
Moreover, such a factorization is unique up to reordering of the factors.

G = G1�G2 prime implies that either G1 or G2 is K1

Number of prime factors is at most log |G|

Algorithms

Feigenbaum (1985) - O
(
|V |4.5

)
Winkler (1987) - O

(
|V |4

)
from isometrically embedding graphs by Graham

and Winkler (1985)
Feder (1992) - O (|V | |E |)
Imrich and Peterin (2007) - O (|E |)
C++ implementation by Hellmuth and Staude
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Example: Filtering on Social Product Networks

(a) Father
(b) Mother
(c) Child 1
(d) Child 2

a

b

c

d

Product Control:
=⇒ Father 14
Layered Control:
=⇒ All fathers or all of family 14
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Conclusion

Explored composition/factorization of dynamic network into smaller dynamic
factor-networks

Presented a factorization of controllability - a product and layered approach

Linked the factors symmetry to smallest controllable input set

Future work involves examining other graph products in network dynamics
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