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Abstract—This paper examines the dynamics of a networked
multi-agent system operating with a consensus-type coordina-
tion algorithm that can be influenced by external agents. We
refer to this class of networks as semi-autonomous. Within such
a class, we consider a network’s resilience to the influence
of external agents delivering a test signal, namely a Gaussian
noise with a given mean. Specifically, we examine the resultant
mean and variance of the states of the agents in the network,
via metrics dubbed as mean and variance resilience, as well
as relate these quantities to circuit-theoretic notions of the
network. These metrics are then used to propose adaptive
protocols for tree graphs to increase or decrease the mean
and variance resilience. Finally, a hybrid protocol is proposed
which is shown to have a guaranteed performance using game-
theoretic techniques. All protocols involve decentralized edge
swaps that can be performed in parallel, asynchronously, and
require only local agent information of the graph structure.

Index Terms—Semi-autonomous networks; Consensus proto-
col; Effective Resistance; Coordinated control over networks

I. INTRODUCTION

Consensus-type algorithms provide effective means for

distributed information-sharing and control for networked,

multi-agent systems in settings such as multi-vehicle control,

formation control, swarming, and distributed estimation; see

for example, [1], [2], [3], [4]. An appeal of consensus algo-

rithms is their ability to operate autonomously over simple

trusting agents. This has the added benefit that external (con-

trol) agents, perceived as native agents, can seamlessly attach

to the network and steer it in particular directions. These

additional agents, ignoring consensus rules, will influence

the system dynamics compared to the unforced networked

system resulting in scenarios such as leader-follower [2] and

drift correction [5]. The detriment is that this same approach

can be adopted by malicious infiltrating agents. We refer to

this class of systems, with friendly and/or unfriendly attached

nodes, as semi-autonomous networks.

In this paper we examine the resilience of a network to

the effect of an external agent injecting a test signal, namely

a white Gaussian signal, into the network. The resilience of

the network is measured in terms of the mean and variance

of the agents’ state; we refer to these metrics as the mean

and variance resilience. For the mean resilience, an electrical

network analogy is used to measure the average cost of

convergence. For the variance resilience, on the other hand,

we use the controllability gramian of the resulting system.
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Both types of resilience are subsequently used to propose

decentralized protocols for tree graphs that adaptively aim to

improve or degrade the network’s resilience by performing

local edge swaps.

The contribution of the paper is two fold. First, we provide

a system-theoretic approach to examine and reason about the

resilience of influenced coordination protocols operating over

a graph. Secondly, we provide distributed adaptation schemes

that the agents in the network can adopt in order to alter the

influence of the external agents on the network operation.

II. BACKGROUND AND MODEL

We provide a brief background on constructs and models

that will be used in this paper.

An undirected graph G = (V,E) is defined by a node set

V with cardinality n and an edge set E comprised of pairs

of nodes, where nodes vi and vj are adjacent if {vi, vj} ∈ E.

We denote the set of nodes adjacent to vi as N (vi) and the

minimum path length, induced by the graph, between nodes

vi and vj as d (vi, vj). The degree δi of node vi is the number

of its adjacent nodes. The degree matrix ∆(G) ∈ R
n×n is

a diagonal matrix with δi at position (i, i). The adjacency

matrix is an n×n symmetric matrix with [A(G)]ij = 1 when

{vi, vj} ∈ E and [A(G)]ij = 0 otherwise. The combinatorial

Laplacian is defined as L(G) = ∆(G) −A(G).
Now consider xi(t) ∈ R to be node (or for our case agent)

vi’s state at time t. The continuous-time consensus protocol

is defined as ẋi(t) =
∑

{i,j}∈E (xj(t)− xi(t)) where agent

pairs {i, j} ∈ E are able to communicate. In a compact

form with x(t) ∈ R
n, the collective dynamics is represented

as ẋ(t) = −L(G)x(t) with L(G) being the Laplacian of the

underlying interaction topology [1].

We next introduce a model of influenced consensus asso-

ciated with a control pair R = (R, ER), where R ∈ R
r is the

set of r external agent and ER ⊆ R × V is the set of edges

used by the external agents to inject signals into the network.

It is assumed that each external agent rj ∈ R is attached to

exactly one node vi ∈ V along the edge {rj , vi} ∈ ER ∈ R
r

and subsequently delivers a signal uj(t) ∈ R.

The resulting influenced system now assumes the form,

ẋ(t) = A(G,R)x(t) +B(R)u(t), (1)

where B(R) ∈ R
n×r with [B(R)]ij = 1 when {rj , vi} ∈ ER

and [B(R)]ij = 0 otherwise, and

A(G,R) = − (L(G) +M (R)) ∈ R
n×n, (2)

where M (R) = B(R)B(R)T ∈ R
n×n. We also define the

special type of single-agent control as Ri where R = {r1}

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7744-9/10/$26.00 ©2010 IEEE 7473



(a) (b)

A(G,R) =







−3 1 1 0
1 −2 1 0
1 1 −3 1
0 0 1 −2






, B(R) =







1 0
0 0
0 0
0 1






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Figure 1. (a) Network graph with external (control) agents r1 and r2
attached to agents v1 and v4 respectively, leading to an altered Laplacian
A(G,R) and input matrix B(R) of model (1). (b) Equivalent electrical
network. The potential difference Vv3 − VR is the effective resistance
between v3 and common resistor node {r1, r2}.

and ER = {r1, vi}. Further the set of agents vi such that

{rj , vi} ∈ ER for some rj will be denoted by π (ER).
We recognize A (G,R) as the matrix-weighted Dirichlet,

or grounded Laplacian [6], [7]. An auxiliary observation on

the Dirichlet matrix, to be used subsequently, is the following.

Proposition 1: [8] The matrix A(G,R) of model (1) is

negative definite (and so invertible) if the graph is connected.

In order to quantify the resilience of a network to resist the

influence of external agents, the following two observations

are in order: (1) the dynamics of the mean of agents’ state

is captured by model (1) where u is replaced by the mean

of the Gaussian noise uc, (2) when the underlying graph

is connected, all agents’ state converge in the mean to uc.

The last statement is a direct consequence of Proposition

1. We approach the network resilience problem from two

fronts; first as a network’s ability to resist its agent states’

convergence to uc - dubbed mean resilience (Section III) -

and secondly its ability to resist its agent states’ variance

increasing due to a noisy external agent’s signal - dubbed

variance resilience (Section IV).

III. MEAN RESILIENCE

The mean resilience is a metric for the effectiveness of a
network, via its topology, to resist convergence to the mean of
external agents’ signal uc. We derive the mean resilience as
the cost incurred by external agents to steer the mean of the

states to uc. More specifically, noting that 1 = [1, . . . , 1]T ,
1x ∈ R

n, 1u ∈ R
r and A(G,R)−1B1u = −1x, the conver-

gence cost, with coordinate transform x̃(t) = x(t) − uc1x

can be derived as,1

2

ˆ T

0

x̃T x̃dt =

ˆ T

0

x̃Tx+ xT x̃− x̃T
1xuc − uc1

T
x x̃dt

=

ˆ T

0

x̃Tx+ xT x̃+ x̃TA−1B1uuc + uc1
T
uB

TA−1x̃dt

=

ˆ T

0

(Ax+B1uuc)
T A−1x̃+ x̃TA−1 (Ax+B1uuc) dt

=

ˆ T

0

ẋTA−1x̃+ x̃TA−1ẋdt =

ˆ T

0

d

dt
x̃(t)TA−1x̃(t)dt

= x̃(T )TA−1x̃(T )− x̃(0)TA−1x̃(0).

In order to parametrize the resilience of the network for
a specific control set R, let us define the accumulative

1The scaling by 2 is cosmetic.

state mean over a finite time horizon T and x̃(0) uniformly
distributed about the unit circle as

Javg (G,R, T ) = E‖x̃(0)‖=1

(

2

ˆ T

0

x̃(t)T x̃(t)dt

)

= E‖x̃(0)‖=1

(

x̃(T )TA−1x̃(T )− x̃(0)TA−1x̃(0)
)

= E‖x̃(0)‖=1tr

(

x̃(0)x̃(0)T
(

(

eAT
)T

A−1eAT −A−1

))

= E‖x̃(0)‖2=ntr

(

1√
n
x̃(0)

1√
n
x̃(0)T (eATA−1eAT − A−1)

)

=
1

n
tr
((

E‖x̃(0)‖2=nx̃(0)x̃(0)
T
)(

eATA−1eAT − A−1
))

=
1

n
tr(I(e2AT − I)A−1) =

1

n

n
∑

i=1

1

λi(−A)
(1− e−2λi(−A)T ).

We assume time T is unknown but sufficiently large,

justifying the use of Javg (G,R,∞) as a measure of mean

resilience. In fact for brevity, we let Javg (G,R,∞) =
Javg (G,R). We can now formally define our metric.

Definition 2: The mean resilience of a network is the

average cost incurred by external agents to steer the mean

state of the entire network to its own mean value, over an

infinite horizon, and is equal to

Javg (G,R) =
1

n
tr
(

−A(G,R)−1
)

.

The following section will provide more insight into the mean

resilience.

A. Analysis of Mean resilience

It has previously been established that the diagonal of

−A(G,R)−1 has a resistive electrical network interpretation

[6]. In this setup, the agents V and R, defined in Section

II, represent connection points between 1 ohm resistors

corresponding to the communication edges E and ER. In

addition, all connection points corresponding to R are elec-

trically shorted together. The effective resistance between two

connection points in an electrical network is defined as the

potential drop between the two points, when a 1 Amp current

source is connected across the two points. The i-th diagonal

element of −A(G,R)−1 is the effective resistance Eeff (vi)
between the common shorted external agents R and vi. An

example of the equivalent electrical network is displayed in

Figure 1. The implication is that

Javg (G,R) =
1

n

n
∑

i=1

Eeff (vi) . (3)

Tree graphs are often adopted for agent-to-agent commu-

nication topologies as they minimize edge (communication)

costs while maintaining connectivity. We define some prop-

erties of Javg (G,R) specific to trees.

In this direction, let us first define the special set of agents

that lie on any of the shortest paths between agents in R
as main path agents designated by set M. This is a unique

set for a given pair (G,R). For all vi /∈ M there exists an

unique vj ∈ M that has a shorter minimum path to vi than

any other agent in M, we define this agent as Γ (vi), i.e.,

Γ (vi) is the closest agent to vi that is a member of the main

path. Therefore for tree graphs we can state the following.
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Lemma 3: [Mean resilience for trees] For the n-agent
connected tree T , the mean resilience is Javg(T ,R)

=
1

n
(
∑

vi∈M
Eeff (vi) +

∑

vi /∈M

[

Eeff (Γ (vi)) + d (vi,Γ (vi))
]

).

Proof: If vi /∈ M then the equivalent electrical network

involving vi can be simplified into a resistor representing

Eeff (Γ (vi)) ohms in series with d (vi,Γ (vi))×1 ohm resis-

tors. The result then follows from (3).

There is an intuitive link between the centrality of an agent in

a network and its influence on the network’s dynamics. This

correlation becomes apparent for tree graphs in the following.

Corollary 4: [Single-external mean resilience] For the n-

agent connected tree T the mean resilience of the network

to a single external agent attached to any agent vi ∈ V is

Javg(T ,Ri) =
1

n
(

n
∑

j=1

d (vi, vj) + n).

Proof: Follows from Lemma 3 with vi = M and

Eeff (vi) = 1.

Corollary 5: [Single-external mean resilience bounds] For

the n-agent connected tree T the mean resilience of the

network to a single external agent attached to any agent

vi ∈ V is bounded as 2− 1
n ≤ Javg(T ,Ri) ≤ 1

2 (n+ 1) .
Proof: Over all trees, the central node of the star graph

has the smallest accumulative distance of n− 1 to all other

nodes and an end node of the path graph has the largest

accumulative distance of
∑n−1

i=1 i to all other nodes.

Proposition 6: [Multi-external mean resilience bounds]

For the n-agent connected tree T the mean resilience

of r external agents attached to any set of agents in

V is bounded above by a graph with all main path

nodes satisfying vi ∈ π (ER) and Javg(T ,R) ≤
1
2n

(

(n− r)
2
+ 3 (n− r) + r + 2/ (r + 1)

)

.

Proof: From our effective resistance interpretation of

Javg(T ,R) (3), we note that adding resistors in series gen-

erates a higher resistance than adding in parallel. Therefore,

argmax(T ,R)J
avg (T ,R) implies M = π (ER). Furthermore

from Lemma 3, the largest accumulative distance for vi /∈ M
will correspond to a path connected to the highest effective

resistance node of M. Now the main path subgraph with the

highest effective resistance sum is the star graph with the

least number of parallel resistors. Applying resistor rules we

find that the star graph S with an external agent connected

to each node, i.e., r = n is the largest mean resilience graph

with Javg(S,R) =
(

r2 + r + 2
)

/2r(r + 1). Similarly, the

effective resistance of an agent in the main path subgraph is

Eeff (vi) ≤ 1 as the equivalent electric network is a parallel

resistor cascade of 1Ω resistors. Combining this bound and

the main path subgraph S, we have

Javg(T ,R) ≤ 1
n
(rJavg(S ,R) +

∑n−r
i=1

(

Eeff (v1) + i
)

)

≤ 1
2n ((n− r)2 + 3 (n− r) + r + 2/ (r + 1)).

B. Adaptive Protocol to Improve the Mean Resilience for

Trees

We now can propose a protocol over a tree graph T to

locally trade edges between adjacent agents with the objective

of deterring the influence of external agents attached to the

Protocol 1 Increased mean resilience edge swap

foreach Agent vi do

if ∃vj , vk ∈ N (vi), vj 6= vk and vj , vk /∈ I(vi) then
E → E − {vi, vj}+ {vj , vk}

end

end

network, feeding in a constant mean signal. We consider a

scenario where agents connected to R broadcast acknowl-

edgment signals informing the network that they are being

unfavorably influenced and so all agents within the graph

are aware of the local directions of the external agents and

more specifically their neighboring agents that are closer to

the external agents. We denote these agents in the set I(vi)
for agent vi and define if formally as the set composed of all

agents that are neighbors of vi and lie on the shortest path

between vi and any rj ∈ R.

We clarify that R is solely composed of unfriendly agents.

The following lemma can be executed concurrently, in a

random agent order, guarantees that Javg (T ,R) increases,

and a connected tree is maintained at each iteration. We

denote edge removal and addition by the set notation “−/+.”

Lemma 7: [Edge swap for improved mean resilience] Un-

der Protocol 1, Javg (T ,R) is strictly increasing.

Proof: If vm ∈ M then for all vl ∈ N (vm) we

have vm ∈ I (vl). Therefore in regard to Protocol 1

vj , vk /∈ M. Then from Lemma 3 before the edge swap

we have Eeff (vj) = Eeff (vk) = Eeff (vi) + 1, after

the edge swap Eeff (vj) = Eeff (vi) + 2 and all other

agent’s effective resistance increases by 1 or stays constant.

Therefore, Javg (T ,R) increases.

Under the decentralized unfriendly Protocol 1, for all single-

external agent trees the graph will eventually reach the

greatest Javg
(

T ,R1
)

= (n+ 1) /2 corresponding to a path

graph with the external agent at an end. All other graphs will

acquire a path-like appearance with the main path unaffected

by the protocol’s edge swaps.

The protocol was applied to a random tree graph on 40

agents with a single external agent connected to v1. The path

graph with the external agent attached to an end node was

achieved after 100 edge swaps. A sample of the intermediate

graphs is displayed in Figure 2. The metric Javg
(

T ,R1
)

increased for each edge swap and no more edge swaps

were possible when the tree became a path graph with

Javg
(

T ,R1
)

= 20.5.

A complementary friendly protocol that aims to decrease

Javg (T ,R) can also be obtained from Lemma 7 [9].

Remark 8: With only local knowledge, i.e., I(vi) and

N (vi), Lemma 7 describes the only edge swaps available

to vi that guarantee Javg increases [9].

A by-product of this remark is that a strictly increasing local-

knowledge protocol cannot guarantee the tree graph with the

largest Javg for r > 1 external agents.
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                      Edge Flip 0             −−−−−−−>                      Edge Flip 20             −−−−−−−>                      Edge Flip 40             −−−−−−−>

                      Edge Flip 60             −−−−−−−>                      Edge Flip 80             −−−−−−−> Edge Flip 100

Figure 2. Selected iterations of a random tree graph with an external agent
attached (square) running Protocol 1.

IV. VARIANCE RESILIENCE

It is not uncommon that the mean is not of central

interest and that adjustment of the variance of the states

may be more desirable. With this in mind, the controllability

gramian, defined as P =:
´∞
0 eAτBBT eA

T τdτ , proves to

be particularly suitable for such an analysis. We will focus

on tr(P ), as the average variance is 1/n
∑n

i=1 E
(

x̃2
i (t)

)

=
(1/n) tr

(

E
[

x̃(t)x̃T (t)
])

= (1/n) tr(P ) as t → ∞ over n
outputs due to a white noise input with covariance I .

We note that P will be dependent on G and R and so

henceforth is denoted by P (G,R). The variance resilience

is a metric quantifying the network’s susceptibility to white

noise from external agents.

Definition 9: The variance resilience of a network is the

trace of the controllability gramian tr(P (G,R)).
The following section will provide more insights into the

variance resilience.

A. Analysis of Variance resilience

Directly from the definition of the controllability gramian
one has

tr(P (G,R)) = tr(

ˆ ∞

0

eA(G,R)τB (R)B (R)T eA(G,R)T τdτ )

= tr(M (R)

ˆ ∞

0

e2A(G,R)τdτ ) = −1

2
tr
(

M (R)A(G,R)−1) .

Lemma 10: [General variance resilience] For a connected

graph G the variance resilience is

tr(P (G,R)) =
1

2

∑

vi∈π(ER)

Eeff (vi) .

Proof: We note that M (R) is a purely diagonal matrix

with [M (R)]ii = 1 if vi ∈ π (ER) and [M (R)]ii = 0, oth-

erwise. Therefore
[

M (R)A(G,R)−1
]

ii
=

[

A(G,R)−1
]

ii
if

vi ∈ π (ER) and
[

M (R)A(G,R)−1
]

ii
= 0, otherwise. The

statement of the lemma now follows.

Corollary 11: [Single-external variance resilience] For a

connected graph and the influence model (1) with one exter-

nal agent,
tr(P (G,R)) = 1/2.

Proof: The effective resistance of {vi, r1} = ER is

Eeff(vi) = 1 as there is only one resistor link between vi
and r1. The corollary follows.

The implication of Corollary 11 is that on average, a single-

external agent attached to an n-agent connected graph has the

same reduction in average variance to white noise and energy

dissipation from an impulse input regardless of the structure

of the network and where the external agent is connected.

Proposition 12: [Multiple-external variance resilience]

For connected graphs and the influence model (1) with r
external agents, the variance damping measure is bounded

below by a graph with M = π (ER) in which case

tr(P (G,R)) ≥ r
2
√
5
.

Proof: By Rayleigh’s Monotonicity Principle2 the min-

imum effective resistance will occur when the main path is

only composed of the r agents π (ER). Of these r agent

subgraphs, the path graph with the most resistors in parallel

will have the smallest effective resistance and therefore the

smallest value of tr(P (G,R)). The eigenvalues of the Lapla-

cian of a r-node path graph are λr+1−i (P) = 2+2 cos πi
r , for

i = 1, . . . , r [11]. For R̃ corresponding to an external agent

attached to every agent in P , from (2) and M(R̃) = I then

λr+1−i(−A(P , R̃)) = λr+1−i (P)+1. Thus, tr(P (G, R̃)) =
1
2

∑r
i=1(3 + 2 cos πi

r )
−1 ≥ r

2
√
5
.

B. Adaptive Protocol to Degrade the Variance Resilience for

Trees

We propose another protocol for tree graphs T now

with the objective of reducing the state variance due to

external agents attached to the network and feeding in

white noise with covariance I , i.e., decreasing the variance

resilience. Again the protocol involves local edge trades exe-

cuted concurrently, in a random agent order, guarantees that

tr(P (T ,R)) decreases and a connected tree is maintained at

each iteration.

We note for a connected tree graph tr(P (T ,R)) is only

dependent on d (ri, rj) for all {ri, rj} pairs in R, and so only

dependent on the graph of the main path with agents M.

Lemma 13: [Edge Swap for decreased variance resilience]

Under Protocol 2, tr (P (T ,R)) is decreasing.

Proof: Firstly, as vi has |I (vi)| = 2 then vi ∈ M.

As vj and vk are closer to an external agent than the main

path agent vi then vj , vk ∈ M. The edge swap involves

removing vi from M. On the other hand, tr(P (T ,R))
only depends on the subgraph composed of agents in M,

so the effect is to reduce an edge resistance within the

electrical network representing this subgraph. By Rayleigh’s

Monotonicity Law,
∑

{vi,rj}∈ER
Eeff (vi) will not increase

and the lemma follows.

Single-external agent trees will remain unaffected by Proto-

col 2. For double-external agent trees the main path will de-

generate to {vi, vj} = M where ({vi, r1} , {vj , r2}) = ER.

The protocol was run on a 40 agent random tree with 3

2Rayleigh’s Monotonicity Law states that if the edge resistance in an
electrical network is decreased, then the effective resistance between any
two agents in the network can only decrease [10].
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Protocol 2 Decreased variance resilience edge swap

foreach Agent vi /∈ π(ER) do

if ∃vj , vk ∈ N (vi), vj 6= vk and vj , vk = I(vi) then
E → E − {vi, vj}+ {vj , vk}

end

end

(a) (b)

Figure 3. (a) Original random tree and (b) final graph with three external
agents attached (squares) after applying Protocol 2.

external agents; the original and final graphs are displayed in

Figure 3.

A complementary energy amplification protocol, that aims

to increase tr(P (T ,R)), can also be obtained from Lemma

7 [9]. This protocol is suitable for impulse detection as larger

tr(P (T ,R)) produces higher output energy
´∞
0

x(t)Tx(t)dt.
Remark 14: The proposed protocol is the best local-

knowledge, i.e., I(vi) and N (vi), edge swapping method for

vi and no guarantees can be made that the local-knowledge

method will converge to the global-knowledge edge swap

solution [9].

We previously remarked that Protocol 1 does not alter the

main path. Consequently, by Lemma 10, the tr(P (T ,R)) is

conserved throughout this protocol so that, although the mean

resilience is altered, the variance resilience remains the same.

The converse is not true as Protocol 2 involve manipulations

of the main path and, as remarked in the previous section,

this can arbitrarily vary Javg (T ,R). Generally speaking as

tr(P (T ,R)) decreases under Protocol 2 the graphs compress

and so Javg (T ,R) tends to decrease.

V. GAME THEORETIC ADAPTIVE PROTOCOL

The protocols proposed so far possess guarantees on in-

creasing (or decreasing) the mean (or variance) resilience

of the graph per edge swap. The weakness of these pro-

tocols is they tend to converge to graphs associated with a

local minimum (or maximum) Javg (T ,R) (or tr(P (T ,R)))
with potentially sub-optimal performance. Furthermore the

protocols cannot be applied concurrently, e.g., one that

aims for high Javg (T ,R) and low tr(P (T ,R)). We now

present a protocol that exhibits these attributes, i.e., the

final graphs are within guaranteed bounds of the optimal

over all graphs for maximizing Javg (T ,R) and minimizing

tr(P (T ,R)), respectively, but no longer possess strictly

increasing Javg (T ,R) and decreasing tr(P (T ,R)). We will

present the protocol and use game theoretic techniques to

bound the protocol’s performance.

In the following, the objective is to increase Javg (T ,R)
and tr(P (T ,R))−1. This produces a graph that is a balance

Protocol 3 Increased mean resilience and decreased variance

resilience edge swap

foreach Agent vi do
if ∃vj , vk ∈ N (vi) and vj 6= vk , and (vj , vk /∈ I(vi)) or

(vi /∈ π2(ER) and vj , vk ∈ I(vi)) then
E → E − {vi, vj}+ {vj , vk}

end

end

between dampening the external agents’ effect on the sys-

tem’s state mean and the state variance. Protocol 3 concur-

rently applies Protocol 1 and 2 with a slight adaption to the

latter, specifically, relaxing vj ,vk = I (vi) to vj ,vk ∈ I (vi).
The adaption guarantees that the main path subgraph will

converge to a graph where M = π (ER). The remaining

nodes in the graph will form paths connected to agents in

π (ER). There are many equilibria graphs that satisfy these

properties. The specific equilibrium will depend on the initial

graph structure and the sequence of edge swaps. The analysis

of this protocol falls under a special class of game called a

potential game [12], which exhibits certain guarantees which

will be explored further.

A. Game theoretic Analysis

Game theory supplies tools to quantify a protocol’s success

where more than one final equilibria could be reached. Two

metrics are generally used; the price of stability which is the

ratio between the best acquirable and the optimal equilibria,

and the price of anarchy which is the ratio of the worst

acquirable and the optimal equilibria.

First we need to establish that the protocol indeed con-

verges to some equilibrium; for this task we use the concept

of a potential game. A potential function Φ is a function

that maps a strategy vector (a vector of each agent’s edge

swap) S = (S1, S2, . . . , Sn) to some real valued number.

The implementation of a strategy on graph T will alter it to

produce a graph T (S). If a protocol is a potential game then:

if S′
i 6= Si is an alternate strategy (edge swap) for agent i

then the local cost benefit to the agent ui(S
′) − ui(S) will

mirror the change in the potential, i.e., condition sgn(Φ(S)−
Φ(S′)) = sgn(ui(S

′) − ui(S))
3. Consider the potential

function Φ (T (S),R) = −∑n
i=1 d (vi,Γ (vi)) , where Γ (vi)

is defined in Section III-A. Therefore if the local cost of

agent vi is ui(T (S),R) = d (vi,Γ (vi)) then this mirroring

condition is met. Protocol 3 satisfies this potential and local

cost function, and so is a potential game.4 Therefore Protocol

3, will always converge to an equilibrium [12].

We can now find the price of stability and anarchy for

Javg (T ,R) and tr(P (T ,R))−1 under Protocol 3.

Proposition 15: [Price for mean resilience] Under Proto-

col 3 for Javg (T ,R) the price of stability is equal to 1 and

the price of anarchy is less than or equal to r.
Proof: From Proposition 6 the optimal Javg (T ,R)

equilibrium is bounded as max(T ,R) J
avg(T ,R) ≤

3The signum function is represented by sgn(·).
4This approach is similar to other network game problems [12].
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1
2n

(

(n− r)
2
+ 3 (n− r) + r + 2

r+1

)

. As the optimal

Javg (T ,R) equilibrium (Proposition 6) is acquirable
under Protocol 3, the price of stability is equal to 1.
The worst case Javg (T ,R) equilibrium will correspond
to network with the main-path subgraph a path P (by
Proposition 12) with r√

5
≥ ∑

vi∈M Eeff(vi) and as each

of these agents has Eeff(vi) ≤ 1, the worst case graph
will have ⌊(n− r) /r⌋ = (n− r) /r agents attached as a
path to each of the main-path agents. Applying Lemma 3,

min(T ,R) J
avg (T ,R)> 1

n [r/
√
5 + r

∑(n−r)/r
i=1

(

1/
√
5 + i

)

]

= 1
2nr ((n− r)2 +

(

2√
5
+ 1

)

r (n− r) + 2√
5
r2)

For r = 1, the protocol always acquires the optimal
equilibrium of a path graph with an external agent connected
to an end node so the price of anarchy is 1. For 1 < r ≤ n,

Price of anarchy = max
(T ,R)

Javg(T ,R)/ min
(T ,R)

Javg (T ,R)

≤ r
(n− r)2 + 3 (n− r) + r + 2

r+1

(n− r)2 +
(

2√
5
+ 1

)

r (n− r) + 2√
5
r2

< r,

thus proving the proposition.

Proposition 16: [Price for variance resilience] Under Pro-

tocol 3, for tr(P (T ,R)) the price of stability is equal to 1
and the price of anarchy is less than 11

√
5/20 ≈ 1.23.

Proof: From Proposition 12, the optimal tr(P (T ,R))
equilibrium corresponds to a path P main-path subgraph

with r/2
√
5 < tr(P (P ,R)). As the optimal tr(P (T ,R))

equilibrium is acquirable under Protocol 3 (by Proposition

12), the price of stability is equal to 1. The optimal is

guaranteed for r = 1, 2, 3 (main path subgraph of a path)

and so the price of anarchy is 1 for r ≤ 3. From Proposition

6, the worst acquirable tr(P (T ,R)) equilibrium is associated

with a star S main-path subgraph with tr(P (S,R)) =
(

r2 + r + 2
)

/4(r + 1). For 3 < r ≤ n, the Price of

anarchy= min(T ,R) tr(P (T ,R))/max(T ,R) tr(P (T ,R)) <√
5(r2 + r + 2)/2

(

r2 + r
)

< 11
√
5/20, thus proving the

proposition.

B. Protocol Comparison

Protocol 3 was applied to a 40 node tree graph with 7

external agents. For comparison, Protocol 1 (increasing mean

resilience) and Protocol 2 (decreasing variance resilience)

were applied to the same graph. The original and final

graphs for each protocol appear in Figure 4 while the metrics

Javg (T ,R) and tr(P (T ,R)) for each compared to the

optimal tree graphs for Javg (T ,R) and tr(P (T ,R)) are

displayed in Figure 5.

We note that Protocol 3 outperformed Protocols 1 and

2. The ratio of the optimal to the final equilibrium under

Protocol 3 was within 1.6 for Javg (T ,R) and within 1.1

for tr(P (T ,R))−1, agreeing with the game-theoretic bounds

found in Propositions 15 and 16.

VI. CONCLUSION

This paper presents a system-theoretic approach to the no-

tion of semi-autonomy. Metrics were introduced and analyzed

that quantify the network’s ability, via its topology, to resist

the influence of external agents. Decentralized protocols

involving adapting the network structure were proposed for

(a) (b)

(c) (d)
Figure 4. (a) Original random tree and final graph with seven external
agents attached (squares) after applying (b) Protocol 1, (c) Protocol 2 and
(d) Protocol 3.
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Figure 5. Javg (T ,R) and tr(P (T ,R)) after each edge swap from
Protocols 1, 2 and 3 applied to the original graph in Figure 4 as well
as the respective optimal tree graphs with 40 nodes and 7 external agents.

tree graphs to vary these metrics. Finally the protocols were

extended to a hybrid protocol and analyzed using game

theoretic techniques.
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