Online Distributed Estimation via Adaptive Sensor Networks

Saghar Hosseini, Airlie Chapman, and Mehran Mesbahi

Abstract

The paper presents an online distributed estimation scheme over adaptive sensor networks. The objective of the algorithm is consistent with distributed least squares without prior assumptions on the uncertainties in the operating environment of the sensors or the quality of sensor observations. Specifically, it is assumed that the observation process is time-varying due to the sensor's susceptibility to unknown errors. Furthermore, there is no probabilistic assumption made on the additive measurement noise. Inspired by recent advances in distributed convex optimization, we propose an online distributed algorithm based on a dual subgradient averaging for the solution of the corresponding estimation problem. Moreover, we examine the situation where the algorithm adapts the weights of the communication links in the network due to uncertainty on the reliability of neighboring sensors. An upper bound on the regret of the algorithm as a function of the underlying network topology is then discussed, followed by simulation results for a few representative classes of sensor networks.

Index Terms

Sensor networks; distributed estimation; network topology design; online optimization

A preliminary version of this work will appear in the IEEE Conference on Decision and Control, 2013.

The research of the authors was supported by the ONR grant N00014-12-1-1002 and AFOSR grant FA9550-12-1-0203-DEF. The authors are with the Department of Aeronautics and Astronautics, University of Washington, WA 98105. Emails: {saghar, airliec, mesbahi}@uw.edu.